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Abstract

Decision makers have long relied on experts to inform their decision making. Expert judgment analysis
is a way to elicit and combine the opinions of a group of experts to facilitate decision making. The use
of expert judgment is most appropriate when there is a lack of data for obtaining reasonable statistical
results.

The experts are asked for advice by one or more decision makers who face a specific real decision
problem. The decision makers are outside the group of experts and are jointly responsible and account-
able for the decision and committed to finding solutions that everyone can live with. The emphasis is
on the decision makers learning from the experts.

The focus of this thesis is an overview and comparison of the various elicitation and combination
methods available. These include the traditional committee method, the Delphi method, the paired
comparisons method, the negative exponential model, Cooke’s classical model, the histogram tech-
nique, using the Dirichlet distribution in the case of a set of uncertain proportions which must sum to
one, and the employment of overfitting. The supra Bayes approach, the determination of weights for
the experts, and combining the opinions of experts where each opinion is associated with a confidence
level that represents the expert’s conviction of his own judgment are also considered.

Keywords: Expert judgment analysis, traditional committee method, Delphi method, paired com-
parisons method, negative exponential model, Cooke’s classical model, Dirichlet distribution, Supra
Bayes approach
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Chapter 1

Introduction

1.1 Background and significance of study

Decision analysis is an increasingly popular field of study of the 21st century. The rapidly advancing
world of technology is generating large amounts of data on various platforms through logs of cell-
phone use, credit cards and internet history, to name a few. Google can predict what you are searching
for from just the first few letters typed into the search-bar and from logs of the websites you regularly
visit. According to Mayer-Schonberger and Cukier (2013), it can even collate various users’ searches
to predict where a flu will spread to. This growing trend of massive amounts of seemingly stagnant
data informing decisions by facilitating predictions beyond real time has been awarded the term “Big
Data”. Data scientists who have an aptitude for statistics and databases are considered the scarce and
invaluable experts of “Big Data”.

On the other end of the scale, there is growing interest in fields where there are a lack of data to
produce reasonable results through normal statistical methods. These fields include climate change,
accident consequence management for nuclear power plants and other critical infrastructures, aircraft
wiring risk assessment, cyber security, maintenance optimisation, to mention but a few. Expert Judg-
ment Analysis is a technique that draws opinions from experts in the field of interest about the unknown
variables. Eggstaff et al. (2014) explain that these opinions are weighted and combined to represent the
uncertainty or risk in decision analysis by an external decision maker who is committed to determine
the best possible solution from the experts. Various methods of eliciting and combining expert opinion
have been developed over the years and Cooke’s classical model has been a popular approach for over
20 years. Since fields that lack data are prone to high levels of risk, expert judgment analysis could be
considered “Big Data” ’s coy mistress. Cooke and Goosens (2010) explain that the experts may have
valuable but uncertain (due to the lack of data) knowledge on the parameters of interest, which can be
specified to some subjective degree of belief. It is then up to the decision maker to ultimately produce
“optimally defensible” choices of these parameters.
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CHAPTER 1. INTRODUCTION 2

1.2 Objectives of study

The objectives of this thesis are:

• to give an overview and comparison of various methods for elicitation and combination of ex-
pert opinion currently available. These include the Traditional Committee method, the Delphi
method, the Paired Comparisons method, the Cooke method and using the Dirichlet distribution;

• to demonstrate the most popular method of elicitation, namely, Cooke’s “Classical model”.

1.3 Organisation of study

Chapter 2 discusses various methods of eliciting and combining expert opinion. As mentioned in the
abstract, these include the traditional committee method, the Delphi method, the paired comparison
method, the Cooke method and using the Dirichlet distribution. Some models and techniques that
employ the approaches of some of these methods are also discussed, namely the negative exponential
life model, the classical model, the histogram technique and the supra Bayes approach. Chapter 2 ends
off with a section on some instances of the practical application of expert judgment analysis. Chapter
3 presents our own application of some of the methods discussed in Chapter 2. The results will be
compared and discussed as per the objectives of this study. Finally, Chapter 4 concludes the findings
of this study and suggest areas of further research.



Chapter 2

Expert Judgment Analysis

2.1 General Overview

Simply put by Ryan et al. (2012), expert judgment analysis has been introduced as a way to elicit,
codify and pool the opinions of a select group of specialists in the face of uncertainty. According to
Cooke and Goosens (2010), the group of specialists may possess valuable knowledge about models and
parameters in the subject matter, and they can draw from their vast expertise in their particular field of
interest to assess unknown quantities. The knowledge they can offer is not certain but the specialists
can specify “degrees of belief” that can be quantified and aggregated to give optimal choices of param-
eters and models. Note that since the experts themselves are not certain, they typically will not agree
(Cooke and Goosens (2008)), so expert agreement should not be a goal of this analysis. They also
emphasise that for expert judgment analysis to be applicable to a problem, relevant scientific expertise,
along with the relevant theories and measurements, must already exist. The specific quantities of inter-
est are the only variables that can be unmeasurable in practice. Cooke and Goosens (2010) explain that
techniques can be applied to give quantitative assessments of uncertainty, where the assessments are
given as subjective probability distributions from which nominal values of the parameters of interest
can be derived from. One could also apply techniques to give qualitative and comparative assessments
where the resulting alternatives are ranked. The choice of technique is influenced by the scrutability of
the data and processing tools, fairness among the experts, neutrality of the methods against bias, and
performance control of the various techniques.

Cooke and Goosens (2008) determined that expert judgment can aim to produce, in order of
strength of analysis type; census, political consensus or rational consensus. If the aim is to produce a
“census”, they explain that the distribution of views within the expert community are simply surveyed,
and differential weighting can be considered in order to ensure that the expert community is repre-
sented accordingly. If the aim is to produce “political consensus”, the experts are allocated weights
reflective of the interests or stake-holders they will be representing. If each stakeholder is represented

3



CHAPTER 2. EXPERT JUDGMENT ANALYSIS 4

by the same number of experts then equal weighting can be applied. They describe “rational consen-
sus” as a group decision process where the experts, without knowing the final outcome, agree on how
to represent and combine their uncertainties.

Cooke and Goosens (2010) point out that a distinctive feature of the expert judgment analysis
methods developed by Delft University of Technology is control assessments. These are assessments
of uncertain quantities that resemble the variables of interest closely, where the actual values are known
after the experiment. Control assessments can be applied to both expert- and combinations of expert
assessments, and they provide the basis of performance criteria that diverse stakeholders will look at
when deciding whether to buy into the process.

EMSE280 (2011) states that the use of expert judgment is most appropriate when there is a lack
of quantitative data, or reliable good quality data, for obtaining reasonable statistical results. In some
instances the data may be available but it may not have been collected with risk analysis in mind, ne-
cessitating the use of a specialised method of analysis. Other variables to consider when executing this
process are travel, prior training undergone by experts on subjective probability assessments and the
level of documentation available on the subject on interest. In addition, Walker et al. (2004) notes that
financial constraints on the project, availability of the experts and any institutional affiliations they may
have must also be considered before elicitation. Software support is also key during the processing and
write-up of the results so the facilitator would have to consider this prior to the elicitation. All these
concerns will have to be considered by the facilitator. Walker et al. (2004) warns that the incentive
for experts in elicitation should not be to perform as well as they can, as that will introduce bias and
deviate from the required and informative truths.

2.2 Expert Elicitation

To be able to use performance-based elicitation, it is important to consider carefully how to select the
experts and how many are necessary for this procedure. Aspinall (2010) notes that the client may
want a range (with regards to field of expertise) of experts to achieve a panel as impartial as possible,
or may restrict the panel to employees within the company to maintain confidentiality and ensure
relevance. Cooke and Goosens (2010) write that previous studies in this area of research have used
between 4 and 20 experts, and the process duration can be anything from a month to a year. Typically,
in the elicitation phase of expert judgment analysis, one expert is used to conduct a dry run before
finalising the elicitation questions. A meeting is then held with all the experts present to explain the
study design and how the scoring and combining will work. The experts then undergo individual
elicitation where they are asked to answer carefully administered seed questions. These seed questions
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are used to calibrate the performance of the experts and subsequently weight their assessments and
opinions before combining. The above mentioned authors add that these seed variables can also be
used to evaluate and validate the combined expert assessments as they enable “empirical control of
any combination schemes”. They also emphasise the importance of ensuring that performance on seed
variables is pre-judged relevant for performance on the variables of interest. So overall, seed variables
aim to:

• evaluate experts’ subjective probability assessments to determine how they perform;

• facilitate combining expert distributions in a way that optimises performance; and

• gauge and ultimately justify the combination of expert assessments.

The process of expert elicitation has developed and evolved over the years and there are now various
methods and models to consider when carrying out expert judgment analyses.

2.2.1 The traditional committee method

By Cooke and Goosens (2010)’s definition, the traditional committee is a behavioural aggregation
method where the experts interact to achieve homogeneity of information on the variables of interest.
Some behavioural approaches aim to get the experts to agree on a final probability density function
for each variable, while in others, the experts assessments are combined by equal weighting to get the
single probability density function per variable. Cooke and Goosens (2010) argue that the results pro-
duced prove to be inferior to results from elicitation methods that use a mathematical approach such as
the Cooke method discussed in section 2.2.4.

Oblivious to its flaws, many sectors still use the traditional committee method as it is the most
obvious approach before careful thought. A wide range of opinions from various experts are gathered
over a slow deliberative process. Each participant is allowed one vote, resulting in the experts all
assuming equal weights. Aspinall (2010) highlights that the downfall with this method is the inherent
assumption that each expert is equally proficient, equally informed and unbiased. In the analysis being
reviewed by Walker et al. (2004), it was also noted that experts were being considered as though they
were interchangeable, sharing a common variance and a common degree of correlation, when in reality,
pairs of experts are likely to differ.

2.2.2 The Delphi method

Eggstaff et al. (2014) describe the Delphi method as a behavioural technique that is prone to psycho-
logical bias that may affect the validity of the results. The Delphi method requires each expert to give
a formal statement regarding their position on the matter at hand. Cooke and Goosens (2010) explain
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that the statement must specify guesses of the values of the unknown quantities as single point esti-
mates, which makes this method quick and easy to execute. The statements are then circulated several
times and experts are allowed the opportunity to adjust their opinions. After observation, the guesses
are then compared with the observed values. Due to the several rounds of circulation, de Franca Doria
et al. (2009) warn that the decision maker could end up with a long list of issues that can be time-
consuming and difficult to collate and reach a consensus. de Franca Doria et al. (2009) handled this
problem in their study by redefining the definitions in each round then stopping the interactions when
their pre-determined level of 80% consensus was reached.

During the circulation of the statements, as can be expected in group dynamics, Cooke and Goosens
(2010) and Aspinall (2010) point out that adjustments will tend to follow the direction of the supposed
“leading” expert of the group as opposed to being steered by the strongest argument. Aspinall (2010)’s
practical application of Cooke’s method described in section 2.3 shows that neither self confidence nor
scientific prestige and reputation can be considered good predictors of expert performance.

Cooke and Goosens (2010) note that one of the reasons this method is no longer common is that
the observed values and guessed estimates do not have any base scale that would warrant useful com-
parison and interpretation. Specifying the guesses as point estimates unfortunately means that no
indication of uncertainty is provided with the estimate. Furthermore, the methods used to process and
combine the opinions inherently and incorrectly assume that the measurements are normal physical
measurements.

2.2.3 The paired comparisons method

In the paired comparison method, Cooke and Goosens (2010) explain that alternatives are compared
and ranked pairwise based on a criterion such as preference, feasibility, etc, making sure that each
item involved is compared with all the other items in turn. This unfortunately opens the method up to
redundancy. Another disadvantage of this method is that there is no assessment of uncertainty, as with
the Delphi and Traditional Committee methods. However, depending on the availability of necessary
observed values and the method chosen for ranking, these authors propose that the data can actually
be further reduced to an interval or a ratio scale, thus making this method a popular choice for expert
elicitation.

The Negative Exponential Life model
According to Mazzuchi et al. (2008), a popular model based on the paired comparison method for
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expert judgment analysis is the Negative Exponential Life (NEL) model, where n components or envi-
ronments are compared pairwise then ranked. One can then analyse whether each expert is specifying
a true preference structure in his/her answers or merely assigning answers randomly. This can be done
by analysing the count of circular triads in his/her comparisons. A circular triad happens when one
suggests that option 1 is better than option 2, and option 2 is better than option 3, and then option 3 is
better than option 1. When a vast number of events are being compared, such circular triads may occur.

When testing whether all the experts’ agreements are due to chance, the coefficient of agreement
for comparing n items among e experts is defined as

u =

2
n

∑
i=1

n

∑
j=1, j 6=i

(
N(i, j)

2

)
(

e

2

)(
n

2

) −1, (2.1)

where N(i, j) represents the number of times an expert ranked environment Ei as more ’severe’ than

environment E j. Tabulated distributions of
n

∑
i=1

n

∑
j=1, j 6=i

(
N(i, j)

2

)
for small values of n and e under the

null hypothesis that all the agreements of the experts are attributed to chance have been developed, and
the hypothesis concerning u can be tested using these distributions. As an illustration, suppose we are
comparing n = 4 items among e = 2 experts. Thus

u =

2
4

∑
i=1

4

∑
j=1, j 6=i

(
N(i, j)

2

)
(

2
2

)(
4
2

) −1

=
2(

2
2

)(
4
2

) [( N(1,2)
2

)
+

(
N(1,3)

2

)
+

(
N(1,4)

2

)
+

(
N(2,1)

2

)

+

(
N(2,3)

2

)
+

(
N(2,4)

2

)
+

(
N(3,1)

2

)
+

(
N(3,2)

2

)
+

(
N(3,4)

2

)

+

(
N(4,1)

2

)
+

(
N(4,2)

2

)
+

(
N(4,3)

2

)]
−1.

Suppose expert 1’s rankings of (i, j) are as follows: 1 > 2, 1 > 3, 4 > 1, 2 < 1, 2 > 3, 2 < 4, 3 < 1,
3 < 2, 3 < 4, 4 > 1, 4 > 2, 4 > 3; thus, 4 > 1 > 2 > 3.

Furthermore, suppose that expert 2’s rankings of (i, j) are as follows: 1 < 2, 1 < 3, 1 < 4, 2 > 1,
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2 < 3, 2 < 4, 3 > 1, 3 > 2, 3 > 4, 4 > 1, 4 > 2, 4 < 3; thus, 3 > 4 > 2 > 1.
According to these rankings, the values of N(i, j) are given in the following table:

i

1 2 3 4

j

1 - 2 2 0
2 2 - 2 0
3 2 2 - 2
4 4 4 2 -

From this table, it follows that:

u =
2(

2
2

)(
4
2

) [( 2
2

)
+

(
2
2

)
+

(
2
2

)
+

(
2
2

)
+

(
2
2

)

+

(
2
2

)
+

(
2
2

)
+

(
4
2

)
+

(
4
2

)
+

(
2
2

)]
−1

= 5.6667 .

The minimum value of u indicating “no agreement” would be given by

umin =
2
6
(12)−1

= 3,

and the maximum value of u indicating “total agreement” would be given by

umax =
2
6
(36)−1

= 11.
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In general, “no agreement” can be respresented by:

umin =
2n(n−1)(
e

2

)(
n

2

) −1

=
2n(n−1)(
e

2

)(
n(n−1)

2

) −1

=
4(
e

2

) −1, (2.2)

which is independent of the number of itens n. The following graph shows the minimum coefficient
of agreement umin (indicating “no agreement”), versus the number of experts e, where e = 1,2, ...,20.
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Figure 2.1: No agreement

Figure 2.1 shows that the minumum value umin decreases as e increases. For e > 10, umin→−1.

“Total agreement” can, in general, be represented by:

umax =

2

(
n(n−1)

2

(
n

2

))
(

e

2

)(
n

2

) −1

=
n(n−1)(

e

2

) −1. (2.3)
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Note that while umin is independent of n, this is not the case for umax. For a range of 1 to 20 experts,
“total agreement” as represented by equation 2.3 can be graphed as shown by figure 2.2.

Figure 2.2: Total agreement

As shown in figure 2.2, as long as we have a few (less than 5) experts, umax increases as n increases.

Mazzuchi et al. (2008) explains that the coefficient of concordance can be used as a measure of
agreement among the experts, and it is defined as

w =
S

1
12e2(n3−n)

, (2.4)
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or
w′ =

S
1
12en(n+1)

for n > 7, (2.5)

where

S =
n

∑
i=1


e

∑
r=1

R(i,r)−

n

∑
j=1

e

∑
r=1

R( j,r)

n


2

, (2.6)

and R( j,r) is the rank of environment E j obtained through expert r’s responses, where r = 1, ...,e.
Equation 2.4 yields 1 when there is “total agreement” among the experts. Equation 2.5 was developed
by Siegel (1956) and is said to have a chi-squared distribution with n− 1 degrees of freedom. In
order to have confidence in the estimates given by the experts, the one-tailed hypothesis that all the
agreements can be attributed to chance for both w and w′ should be rejected at a level of significance
of 5%. For complete agreement, w attains the value 1.

To compare the two statistics w and w′, consider the ratio

w
w′

=

(
S

1
12 e2(n3−n)

)
(

S
1

12 en(n+1)

)

=

(
1

e(n2−1)

)
(

1
(n+1)

)
=

1
e(n−1)

.

Let k = 1
e(n−1) , thus w = kw′. For large values of e or n, k→ 0. The maximum value of k is 0.5

when e = 2 and n = 2. Therefore 0 < k < 0.5 and w > w′.

Continuing with the example of comparing 4 items among 2 experts, S can be calculated from

equation 2.6. First we determine the values of
2

∑
r=1

R(i,r) for i = 1, ...,4:

For i = 1 : R(1,1)+R(1,2) = 2+4 = 6;

For i = 2 : R(2,1)+R(2,2) = 3+3 = 6;

For i = 3 : R(3,1)+R(3,2) = 4+1 = 5;

For i = 4 : R(4,1)+R(4,2) = 1+2 = 3.
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Then:

4

∑
j=1

2

∑
r=1

R( j,r)

4
=

R(1,1)+R(1,2)+R(2,1)+R(2,2)+R(3,1)+R(3,2)+R(4,1)+R(4,2)
4

= 5.

From this it follows that:

S =
n

∑
i=1


e

∑
r=1

R(i,r)−

n

∑
j=1

e

∑
r=1

R( j,r)

n


2

=
[
(6−5)2 +(6−5)2 +(5−5)2 +(3−5)2]

= 6.

Figure 2.3 is a graphical representation of the coefficient of concordance, w and w′, for n= (5,6, ...,10)
and e = (2,3, ...,10), using S = 6:

Figure 2.3: Coefficients of concordance, w and w′ (alongside a zoomed-in version on the right)

As shown in figure 2.3, w and w′ decrease as n increases. We also see that the graphs for
n = 8,9and10 converge at approximately e = 15, and w′→ 0. This decrease is more evident for

small values of e.

It is worth noting that, for our particular illustration, using w′ when n > 7 seems to be of little
importance. In fact, figure 2.4 shows that using w when n > 7 instead of w′ produces higher (and thus



CHAPTER 2. EXPERT JUDGMENT ANALYSIS 14

more preferable) values for the coefficient of concordance.

Figure 2.4: Coefficient of concordance, w, for n = 5,6, ..,10.

The NEL model uses the idea that when comparing two environments Ei and E j with respective
rates of a quantity of interest hi and h j, the probability that Ei produces the quantity of interest before
E j is given by

r(i, j) =
hi

hi +h j
. (2.7)

Again, continuing with the example, if 1st , 2nd, 3rd and 4th are the rates hi; and the ranked en-
vironments Ei for expert 1 are 4 > 1 > 2 > 3, respectively, then equation 2.7 yields the following
probabilities r(i, j):
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i

1 2 3 4

j

1 - 3
5

2
3

1
3

2 2
5 - 4

7
1
4

3 1
3

3
7 - 1

5

4 2
3

3
4

4
5 -

Similarly, using the same rates hi as above; and letting the environments Ei for expert 2 be
3 > 4 > 2 > 1, respectively, then equation 2.7 yields the following probabilities r(i, j):

i

1 2 3 4

j

1 - 3
7

1
5

1
3

2 4
7 - 1

4
2
5

3 4
5

3
4 - 2

3

4 2
3

3
5

1
3 -

As shown above, r(i, j)+ r( j, i) = 1, ∀i, j, i 6= j.

It is worth mentioning that the NEL model was derived from the Bradley-Terry model (Mazzuchi
et al. (2008)).

2.2.4 The Cooke method

When faced with hard-to-assess risks, Aspinall (2010) writes that weighting the opinion of each ex-
pert based on their knowledge and ability to judge uncertainties relevant to the problem can produce
a “rational consensus”. Ryan et al. (2012) explain that the classical method of Cooke was developed
towards this research effort of obtaining a “rational consensus”, and it has been used extensively in
the field of risk analysis. According to Cooke and Goosens (2010), mathematical aggregation meth-
ods are used to combine the opinions on each variable by applying analytical procedures that operate
on the individual opinions. Such mathematical techniques are not prone to psychological bias as are
behavioural techniques like the Delphi and the traditional committee methods. Aspinall (2010) chose
the Cooke method for expert elicitation as it can bring to light disparities of opinion and loopholes in
knowledge by tackling the problem one small section at a time. In reality, total consensus is said to be
highly improbable and Cooke warns that trying to impose agreement will “promote confusion between
consensus and certainty”, as discussed in section 2.1. Instead of tailoring the decision-making process
to reach an agreeable result, the goal should rather be to quantify the uncertainty among the experts
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and use that as the basis for the decision. This perspective allows for the consideration of the variation
among the experts, and when data are sparse, unreliable or unobtainable, Aspinall (2010) considers the
Cooke method to be most effective.

Cooke and Goosens (2010) give the following brief summary of the procedure and protocol for an
expert judgment exercise:

Preparation for elicitation

1. Definition of case structure

This is a document that provides the framework for the panel of experts specifying all issues to
be taken into consideration during the exercise, including what is expected of the experts and
the aim of the exercise. The document also gives some background information to the exercise,
explains any physical phenomena and models the experts will be working with and states the
conditions for the quantitative assessments.

2. Identification of target variables

This step involves identifying and creating a list of all the model parameters and variables to
be assessed by the experts. The most important parameters are then selected by means of some
formal procedure, bearing in mind the lack of historical data that paves way for structured expert
judgment.

3. Identification of query variables

The target variables from the previous step may not be appropriate for elicitation so query vari-
ables are posed to the experts. During this step it is important to request observable quantities
from the experts, and to structure the questions in a way that is consistent with how the experts
represent relevant information.

4. Identification of performance variables

These are handled similarly to query questions and supported with experimental evidence un-
known to the panel of experts but known to the analyst. Performance variables are also referred to
as “seed” or “domain” variables. These are the variables used to generate each expert’s weights.

5. Identification of experts

Experts should be identified from fields relevant to the subject in question. These experts are
sometimes referred to as “domain” experts. If they’re knowledgeable in subjective probability
they referred to as normative experts.
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6. Selection of experts

From the list of possible experts for the panel created in the previous step, the largest number of
experts possible are selected for elicitation. The selection criteria are:

• reputation and experimental experience in the field of interest

• number and quality of publications in the field of interest

• diversity and background

• familiarity with uncertainty concepts

• balance of views

• interest in- and availability for the project

According to EMSE280 (2011), during expert selection, the facilitator must beware the follow-
ing:

• pre-existing mindsets or assumptions that the expert may use

• structural biases from the level of detail or choice of background scales for quantification

• ulterior motives the experts may have for the study outcome

• cognitive biases such as over-confidence, subconscious anchoring, and over- or underesti-
mating due to how easily the experts recall events

7. Definition of elicitation format document

The elicitation format document should provide an exact description of the questions and any
explanation of them where necessary. It should also include the preferred formats for the uncer-
tainty assessments to be provided by the experts and any additional remarks on what should be
included in the assessments.

8. Dry run exercise

This exercise aims to highlight anything ambiguous in the outlines of the elicitation format doc-
ument, and to ensure that all relevant information and questions have been captured. One or two
experienced people in the field of interest should provide comments on both the case structure
and the elicitation format document before they are finalised and handed out to the panel of
experts.

9. Expert training session

To provide subjective assessments on the query and seed variables the experts provide subjective
cumulative distributions in terms of 5%, 50% and 95% quantiles to indicate their degree of be-
lief. Since most experts are not familiar with providing quantiles as a method of elicitation, they
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need to be trained in issues relating to subjective assessments.

Elicitation

10. Expert elicitation session

Individual interviews of the experts are carried out with a normative analyst and a substantive
expert present. In some instances the experts all meet together to discuss their assessments in
a non quantitative manner, having had a chance to look at other experts assessments before-hand.

Post-elicitation

11. Combination of expert assessments

Pooling the expert assessments is executed with the use of a software package called EXCAL-
IBUR that supports three combination methods; equal, global and item weighting; which are
discussed later in this section under “The Classical Model”. The results indicate the facilitators
probability distributions of the query variables.

12. Discrepancy and robustness analysis

Robustness is analysed on the expert and seed variables in this step. The variables are removed
one at a time and the target variable is re-calculated to determine the relative information loss
due to the removed variable. A large loss means that one cannot replicate the results in another
study with different variables. The uncertainty assessments where the experts differ most are
identified using discrepancy analysis, then reviewed to determine whether any of the causes of
the discrepancy are avoidable.

13. Feed-back

Feed-back is normally done anonymously while every expert has access to his/her assessment,
weights, calibration and informativeness score, and any passages where his/her name is used.

14. Post-processing analyses

Further processing of the combined results is done to derive uncertainty distributions over the
required input parameters using dedicated software packages.

15. Documentation

The last step involves noting down all the relevant information and data in a formal report to be
presented to the decision maker/client and to the experts.
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The uncertainty spreads produced by the Cooke method are generally narrower than those produced
by other approaches but wider than those of single experts. Aspinall (2010) highlights that the biggest
challenge with this method is how to convey the resultant scientific uncertainty to the policy makers
concerned as they would be expecting a sure result without any ambiguity. It is therefore of vital im-
portance to figure out a useful method of communication to match the usefulness of having captured
the uncertainties. It is also warned that the facilitator of this process (preferably a trained uncertainty
analyst according to Cooke and Goosens (2010)) needs to be impartial and able to tactfully hinder
individual experts from taking a pedestal during the debate. The facilitator also needs to be careful
not to ask ambiguous or leading questions while maintaining the engagement of all the participants. If
the expert panel consists of academics and practical field experts, ambiguity could lead to a separation
between them due to different backgrounds. It would be important to highlight these differences from
the beginning so that any errors or misunderstandings that arise may trigger further investigation rather
than discourse.

It may also be a challenge to gather a good variety of useful experts as some scientists are reluctant
to take part in societal matters, and some facilitators prefer to ignore uncertainty as it may result in loss
of public confidence. Aspinall (2010) reassures that the Cooke method attempts to bridge these two
camps in a more sensible way than the usual retreats to merely “agreeing to disagree” or to applying the
the “precautionary principle” (a discretionary technique that leaves the burden of justifying a certain
action to the implementor of the action when there can be no scientific basis for the decision).

According to Aspinall (2010), the longest running application of the Cooke method within science
is volcano management in Montserrat strands.

The Classical Model
Cooke and Goosens (2010) define the Classical model as a “perfomance-based linear pooling or

weighted averaging model”. The model begets its name from an analogy between classical statistical
hypothesis testing and calibration measurement, and it contrasts with some Bayesian models.

Calculation of the weights is based on how the experts performed on the seed questions. The
classical model contains three different performance-based weighting schemes for combining expert
assessments: equal-, global- and item weighting. Cooke and Goosens (2010) explain that equal weight-
ing assigns equal weights to each expert on the panel such that, if there are N experts, then each density
has a weight of 1

N , and the facilitator’s cumulative distribution function for variable i is given by

Fewdm,i =
1
N

N

∑
j=1

f j,i, (2.8)



CHAPTER 2. EXPERT JUDGMENT ANALYSIS 20

where f j,i is the cumulative probability associated with expert j’s assessment of variable i, that is,
f j,i = Pj(Xi ≤ a). Global weights are determined, per expert, by the expert’s calibration score from the
seed variables, and the overall information score based on the uncertainty interval given by the expert.
Item weights are also determined by the expert’s calibration score, but these are calculated per expert
and per variable to maintain regard for how well the experts are informed on each variable.

To give a measure of performance, the performance-based weights make use of calibration and
information. Cooke and Goosens (2010) explain that “calibration” is a probability measure of whether
the experimental results of the seed questions and the experts’ assessments are in alignment, and any
divergence between the two is alluded to chance. The probability measure is found by means of a
hypothesis test. A low probability is interpreted as the experts’ assessments likely being incorrect.
“Information” refers to how concentrated an expert’s distribution is, in relation to some background
measure selected by the facilitator/client. According to Cooke and Goosens (2008), the uniform and
log-uniform background measures are normally used. According to Cooke and Goosens (2010), the
overall combined score given by calibration and information has the following properties:

• Information merely modulates between more- and less well calibrated experts so calibration
dominates over information;

• To avoid bias and maintain neutrality, an expert’s maximal expected score is achieved by- and
only by stating his or her true beliefs;

• Due to the previous property, calibration is scored with a cut-off point and if the score is below
the cut-off then the expert is unweighted;

• Optimising the calibration and information performance of the combination determines the cut-
off point.

Ryan et al. (2012) emphasise that an expert’s final weights are given by the normalised product of the
calibration score and the information score. Once the weights are assigned, the process goes on to
address the actual parameters of interest by combining the experts’ distributions for these parameters,
taking into account their relative weights.

As with Bayesian models, Cooke and Goosens (2010) point out that a fundamental assumption of
the Classical model is that experts’ future performance can be judged on the basis of how they have
performed in the past. The classical model also follows the Procedures Guide outlined by the Cooke
method.

Calibration

When confronted with continuous uncertainties, Cooke and Goosens (2010) explain that the expert
is required to specify his subjective distribution over the possible values of the quantity in question.
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Normally 5%, 50% and 95% quantiles are requested and then distributions are fitted to these quantiles
based on the calibration and information scores from the quantiles. Ryan et al. (2012) goes on to say
that the calibration of an expert relates to how well the experts specify their quantiles. A well calibrated
expert will have:

• 5% of the seed variable observed values below his/her 5th percentile value (i.e below q1);

• 45% of the seed variable observed values between his/her 5th and 50th percentile values (i.e
between q1 and q2);

• 45% of the seed variables observed values between his her 50th and 95th percentile values (i.e
between q2 and q3); and

• 5% of the seed variables observed values above his/her 95th percentile values (i.e beyond q3).

The specifications above are referred to respectively as intervals 1 to 4. A useful visual representation
of these intervals is shown in figure 2.5:

Figure 2.5: Calibration intervals

In discrete cases, Cooke and Goosens (2008) explain that the expert would be asked to assign each
event to a pre-defined “probability bin” of 10%,20%, ...,90%. Cooke and Goosens (2008) favour the
quantile format over the discrete format.
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Ryan et al. (2012) explains that the calibration score is calculated using “relative information”,
I(s, p), given by

I(s, p) =
4

∑
i=1

ln(si/pi), (2.9)

where si is the number of observed seed values in interval i
total number of seed values , and pi = 0.05,0.45,0.45 and 0.05 from

the intervals respectively. It is worth noting that if si = pi, ∀i, then I(s, p) =
4

∑
i=1

ln(1) = 0. Ryan et al.

(2012) adds that when the number of seed variables, N, is large, 2NI(s, p) will have a χ2
(3) distribution.

The calibration score for each expert is then calculated as

cal =

{
P{χ2

(3) > 2NI(s, p)} if P{χ2
(3) > 2NI(s, p)> α}

0 otherwise
. (2.10)

This specifies a minimum calibration score of α that, if not met, means the expert receives zero
weight for the analysis. If si = pi, ∀i, then I(s, p) = 0 and cal = P(χ2

(3) > 0) = 1 which is the highest
calibration score an expert can get.

According to Cooke and Goosens (2008), calibration scores can be compared across studies but
one must first ensure that the power of the different hypothesis tests being compared is equalised. For
instance, if the calibration scores of two data sets with N and N′ realisations are being compared, then
the minimum of N and N′ is used.

Information

Ryan et al. (2012) explains that the entire expert distribution must be defined to be able to calculate
the information score for each expert. In order to get the information score for expert e, where each
seed variable’s known value will be r; the elicited percentile values are defined as q5,e, q50,e, and q95,e.
According to Eggstaff et al. (2014), for each item, consider the smallest interval [L,U ] to “bound the
range of possible elicitation variables” . These bounds are defined as:

qL = min{r,q5,1, . . . ,q5,e},

qU = max{r,q95,1, . . . ,q95,e}, (2.11)

where e is the number of experts.
Cooke and Goosens (2008) point out that uniform and log-uniform background measures make use

of the “intrinsic range” where the measures are concentrated, which enables the classical method to
implement the “k% overshoot rule”. According to Ryan et al. (2012), a k% (where k is normally set
at 10 and chosen by the analyst) overshoot below qL and above qU for estimating the 0th and 100th



CHAPTER 2. EXPERT JUDGMENT ANALYSIS 23

percentile points yields

q0 = q5− (k/100)(qU −qL) and

q100 = q95 +(k/100)(qU −qL). (2.12)

We then we have a full five point scale of q0, q5, q50, q95 andq100. Linear interpolation between
the 5 points of q generates a complete expert distribution of the unknown quantity of interest. For
quantities of interest that cannot be observed like the seed variables, the bounds are calculated as in
equations 2.11 and 2.12, excluding r. The information score that indicates how the expert’s distribution
deviates from some meaningful background measure to reflect the expert’s certainty in his/her answers
is, again, calculated using relative information:

in f = I(h, p) =
4

∑
i=1

pi(pi/hi), (2.13)

where

h1 = FU(q5)−FU(q0) =
q5−q0

q100−q0
,

h2 = FU(q50)−FU(q5) =
q50−q5

q100−q0
,

h3 = FU(q95)−FU(q50) =
q95−q50

q100−q0
,

h4 = FU(q100)−FU(q95) =
q100−q95

q100−q0
, (2.14)

and FU is the cumulative distribution function of the background measure. When the realisation is
expected to fall between 0.001 and 1000, Cooke (1991) recommends using the uniform distribution as
the background measure, otherwise the log-uniform distribution.

Assuming the variables are independent, Cooke and Goosens (2008) explain that equation 2.13 is
proportional to the joint distribution of the expert given the background. Information scores cannot be
compared across studies because the scores depend on the “intrinsic range” and other experts’ assess-
ments.

Cooke and Goosens (2008) describe the relative information function as a slow function, such that
if the expert assessments were to significantly change, the information score would be mildly affected.
Conversely, the likelihood function of the calibration score is described as a fast function, which means
the product of calibration and information is mostly driven by the calibration score. A high statistical
likelihood/p-value and high information indicate “good expertise”.
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Decision Maker/Combination

Cooke and Goosens (2008) define a “decision maker” (DM) as the combination of expert assess-
ments. The classical model derives weights for this combination process using linear pooling, and aims
to select weights that result in “good expertise”. A constraint on how the weights are derived is the
“strictly scoring rule” that ensures that the weights are a form of reward to the expert for stating judg-
ments that conform to his/her true beliefs in order to attain maximal weights. To obtain the weighting
score for an expert e, the following formula is suggested:

wα(e) = 1α(calibrationscore)× calibrationscore(e)× in f ormationscore(e), (2.15)

where 1α(x)= 0 if x<α and 1α(x)= 1 otherwise; and calibrationscore(e) and in f ormationscore(e)

are calulated as in equations 2.10 and 2.13, respectively. This means a set of assessments are scored
based on a set of realisations. α is chosen such that the resultant score of the DM is maximised. Using
weights proportional to equation 2.15 and linear pooling for item i, the combined score is given by

DMα(i) =
∑

e=1,...,E
wα(e) fe.i

∑
e=1,...,E

wα(e)
. (2.16)

According to Cooke and Goosens (2008), if we let α∗ maximise
calibrationscore(DMα)× in f ormationscore(DMα) we obtain the global weight that is calculated

on all seed items, DMα∗. They add that one could use weights that employ individual information
scores for each item, rather than the average information score, using the formula:

wα(e, i) = 1α(calibrationscore)× calibrationscore(e)× I( fe,i | gi), (2.17)

where fe,i | gi is expert e’s density for item i, given its background density gi. Consequently, the
resultant combined score is given by:

IDMα(i) =
∑

e=1,...,E
wα(e, i) fe.i

∑
e=1,...,E

wα(e, i)
. (2.18)

IDMα∗ is referred to by Cooke and Goosens (2008) as the item weight DM where α∗ maximises
calibrationscore(IDMα)× in f ormationscore(IDMα). When experts are better trained in probabilistic
assessment, item weights tend to improve over global weights. It is also explained that ideally, although
not yet mathematically proven, the decision maker should perform better than the equal weight DM

and the best expert on the panel.
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The practical application of this popular classical model is illustrated through use of a simple
example in chapter 3.

2.2.5 The Bayesian Approach

In this approach, Garisch (1985) explains that r experts with prior opinions about the other r− 1 ex-
perts in the group are considered, and these opinions are used to formulate a posterior distribution for
each expert. After this first round of assessments, the experts are considered to then posess individual
subjective probability distributions. If there is a possibility of new information arising from a second
round of assessments then the analyst may consider executing one. This revision is usually unnecessary
as the experts would not be willing to compromise their opinions any further. It is not very probable
that consensus will be reached after just the first round, but if consesnsus was a goal of the analysis
then more revisions would be necessary. Since the experts are not likely to have a single estimate at
any revision, the definition of “consensus” in this scenario becomes the revision with the minimum
distance between the smallest and the largest estimates of a parameter.

Garisch (1985) mentions that, in order to maintain consistency, if an expert deems it necessary to
change his assessment based on his opinion of all the other experts in the group, then on subsequent
revisions he/she could be argued to have to also change his assessment based on his own opinion too.
Unfortunately this argument does not lead to convergence for many revisions. It is suggested that it
would be more rational for an expert to update his/her assessment of other people’s estimates based
simply on the expert’s original opinion of them and the expert’s knowledge and understanding of how
his/her estimate will be used in their revisions.

If the more rational approach is followed, it is interesting to try and see whether there would be
convergence to some mutual limit. Garisch (1985) explains that since each expert’s estimate converges
monotonically to an unbiased variation of the other experts’ original opinions, there will not be any
convergence to a mutual limit.

Decision-making technique
Suppose we have two experts who need to estimate some unknown parameter θ and must come as
close to consensus as they can. Let expert i’s estimate be denoted by θi, and let θi be the condition of
a normal density function for his opinion:

θ |Ei ∼ N(θi,σi) i = 1,2

θ in this case is a random variable, and expert i’s opinion about its variability is represented by σi.
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Now, let expert i’s opinion of expert j’s expertise be represented as a normal density function on an
estimate from expert j, θ j :

θ j|Ei ∼ N(pi(θ),wi(θ)) i = 1,2

We will consider only the following particular functions of p(θ) and w(θ) :

pi(θ) = ai +biθ

wi(θ) = vi i = 1,2

If we let ai = 0 and bi = 1 so that pi(θ) = θ , we can then infer that expert i considered the estimate
given by expert j to be an unbiased estimate of θ . Following receiving expert j’s estimate, expert i

must be ready to update his assessment about θ by forming a posterior opinion, hi(θ |θ j), and using its
mean as the new estimate.

Assuming independence of θ1 and θ2, we have that:

θ |θ j,Ei ∼ N
(

kiθi +(1− ki)
θ j−ai

bi
,kiσi

)
, (2.19)

where ki =
vi

b2
i σi+vi

. Expert i’s new estimate will be given by:

θ
(1)
i = kiθi +(1− ki)

θ j−ai

bi
i = 1,2

At this stage, each expert will have updated his estimate but consensus is unlikely as their updated
estimates may consequently be even further apart. Consensus would have to be reached via compro-
mise in later revisions. It is for this reason that the first revision is considered an “improved estimator”,
while any revisions thereafter are denoted “compromise estimators”.

To illustrate this process of decision-making, consider a case of two experts, E1 and E2. Suppose
their estimates of the unknown parameter θ are normally distributed as follows:

θ |E1 ∼ N(θ1 = 10,σ1 = 2) and

θ |E2 ∼ N(θ2 = 15,σ2 = 5).

Suppose further that expert i’s opinion of expert j’s expertise are given by:

θ2|E1 ∼ N(p1(θ) = a1 +b1θ = θ1 +7 , w1(θ) = v1 = 5) and

θ1|E2 ∼ N(p2(θ) = a2 +b2θ = θ2 +3 , w2(θ) = v2 = 4).
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It follows that for θ2|E1, a1 = 7, b1 = 1 and v1 = 5; and for θ1|E2, a2 = 3, b2 = 1 and v2 = 4.
Assuming independence of θ1 and θ2, we performed 4 revisions on the original values of θ . As per
equation 2.19, let k_Ei represent the estimate of ki for expert i, θ_Ei represent the updated estimate of
θi for expert i, and σ_E1 represent the updated estimate of σi for expert i. We obtained the following
results:

Repetition k_E1 θ_E1 σ_E1 k_E2 θ_E2 σ_E2 [(θ_E1)− (θ_E2)]
2

1 - 10 2 - 15 5 -
2 0.714286 9.428571 1.428571 0.444444 10.555556 2.222222 1.270093
3 0.777778 8.123457 1.111111 0.642857 9.081633 1.428571 0.918101
4 0.818182 7.024943 0.909091 0.736842 8.040007 1.052632 1.030355
5 0.846154 6.104184 0.769231 0.791667 7.203536 0.833333 1.208574
6 0.866667 5.317431 0.666667 0.827586 6.496751 0.689655 1.390796
7 0.882353 4.632645 0.588235 0.852941 5.882145 0.588235 1.561250
8 0.894737 4.027329 0.526316 0.871795 5.337337 0.512821 1.716121

Table 2.1: Decision-making technique results

Figure 2.6: Decision-making technique

As shown by table 2.1 and figure 2.6, the initial distance between the experts’ estimates was 5.
The smallest squared distance of 0.918101 was achieved at the first revision of their estimates, thus,
these are referred to as the “improved estimators”. The revisions thereafter are denoted “compromise
estimators” as their aim was to determine if consensus could actually be achieved and it was not, thus
confirming the notion that consensus is highly unlikely.

Now suppose that the experts reveal their revised estimates to each other. The opinion they have
of each other’s estimates is based on the original opinion and updated adhering to Bayes rules. If



CHAPTER 2. EXPERT JUDGMENT ANALYSIS 28

the experts still don’t achieve consensus, then they continue compromising until they get as close as
possible to consensus. After n revisions, expert i will have an estimate:

θ
(n)
i =

{
θikivi +θ j

(
(1−ki)vi

bi
+(n−1)kiσibi

)
− vi(1−ki)ai

bi
− (n−1)kiσiaibi

}
{

vi +(n−1)kiσib2
i
} ,

with variance σ
(n)
i = kiσivi

{vi+(n−1)kiσib2
i }

.

The decision making technique described above for two experts can be extended to a group of r

experts.

It is suggested that the revision where the estimates are closest to each other should be determined
instead of trying to reach consensus. This will be the revision where the “square of the difference
between the maximum and minimum estimates is a minimum”. One could also obtain the posterior
distributions at the revision where the estimates are closest to each other, calculate quantiles, and then
proceed as previously described in the classical model in section 2.2.4.

2.2.6 Using the Dirichlet distribution

Cooke and Goosens (2008) explain that many believe that expert judgment should be approached
from the Bayesian paradigm since experts’ uncertainties concern their subjective probabilities. This
paradigm is based on achieving the maximal expected utility for each individual by requesting a joint
distribution that takes into account the variable of interest, the seed variables and the expert’s distri-
butions over these quantities. Cooke and Goosens (2008) argue that “rational consensus” issues are
resistant to the Bayesian approach.

According to Zapata-Vazqeuz et al. (2012), expert knowledge is increasingly being confidently
represented as a probability distribution but, eliciting multivariate distributions is a more complex task
as it does not suffice to assume mutual independence of the quantities and elicit their marginal distri-
butions separately. An even further challenge is to elicit expert judgments about possible correlations
between uncertain quantities. The Dirichlet distribution is applicable in multivariate elicitation tasks
where the facilitator is trying to elicit information about a set of proportions that must add up to 1. Fur-
thermore, the Dirichlet is a conjugate to multinomial likelihood, which makes it a good choice to elicit
prior distributions for use in Bayesian analysis. The use of the Dirichlet distribution in maintenance
optimisation by Van Noortwijk et al. (1992) will be discussed in section 2.2.6.3.
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2.2.6.1 Properties of the Dirichlet distribution

According to Zapata-Vazqeuz et al. (2012), an expert’s belief π has a Dirichlet distribution with param-
eter vector d = (d1, ...,dk) for k uncertain quantities, i.e π ∼ Di(d) if the belief has probability density
function

f (π | d) = c(d)
k

∏
i=1

π
di−1
i , (2.20)

where πi ≥ 0 for i = 1,2, ...,k ,
k

∑
i=1

πi = 1 and the normalising constant is c(d) =
Γ

 k

∑
i=1

di


k

∏
i=1

(Γdi)

.

Given that n =
k

∑
i=1

di, the mean, variance and covariance of the πi’s are, respectively, given by

E(πi | di) =
di

n
,

Var(πi | di) =
di(n−di)

n2(n+1)
,

Cov(πi,π j | di) =
did j

n2(n+1)
. (2.21)

Zapata-Vazqeuz et al. (2012) point out that the Dirichlet distribution properties useful for elicitation
are the marginal and conditional properties.

The marginal property is that πm+ ∼ Di(d1,d2, ...,dm,d∗m+1) where d∗m+1 =
k

∑
i=m+1

di = n−
m

∑
i=1

di.

This is due to the first m elements of π being denoted by πm = (π1,π2, ...,πm), and

π∗m+1 =
k

∑
i=m+1

πi = 1−
m

∑
i=1

πi, such that πm+ = (πm,π∗m+1) = (π1,π2, ...,πm,π
∗
m+1) and πm+ lies on

the m− dimensional simplex. In addition, there exists a special case where the marginal distribution of
πi is a beta distribution with parameters di and n−di.

For the conditional property let π ′i =
πi

(1−π1−π2−...−πm)
for i = m+1, ...,k, so π ′ = (π ′m+1, ...,π

′
k) lies

on the (k−m−1) dimensional simplex. The conditional property is thus that
π ′ | πm(orπm+) ∼ Di(dm+1, ...,dk). Zapata-Vazqeuz et al. (2012) advise that repeated use of this

property enables one to decompose the Dirichlet distribution into k−1 beta conditional distributions.

As a simple demonstration, the opinions of one expert on a set of k uncertain quantities:
π = (π1,π2, ...,πk) can be elicited. These uncertainties lie on a (k−1) dimensional simplex where

πi ≥ 0 for i = 1,2, ...,k and
k

∑
i=1

πi = 1, enabling the use of the Dirichlet family. The result of the elici-

tation is expected to be a representation of the expert’s knowledge about π as a probability distribution
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(expected to also be of the Dirichlet family) on the simplex. Zapata-Vazqeuz et al. (2012) further ex-
plain that the Dirichlet family is sometimes parameterised with pi =

di
n (i = 1,2, ...,k) and n, instead

of the k parameters di. To ensure that there are k parameters, there is a constraint that
k

∑
i=1

pi = 1. The

pi’s control the means of the πi’s while n controls the overall quantity of uncertainty, thus the expert
is requested to provide an opinion of these parameters. Literature proposes various ways of eliciting
pi’s using the Dirichlet distribution such as requesting the median or mode based on the assumption
of equal probability, requesting a joint mode of the predictive distribution, or using simple probabil-
ities assuming the i′s sum to 1. A value for n can be elicited by obtaining a measure of uncertainty
for one πi, or by considering n to be a measure of the amount (or strength) of information an expert has.

Zapata-Vazqeuz et al. (2012) mention that the fact that the Dirichlet distribution has only one pa-
rameter, n, to control the overall uncertainty is a drawback. If an expert’s uncertainty about different
πi’s did not quite agree with the constraints surrounding the choice of n then a Dirichlet distribution
would not work well. Employing a mixture of Dirichlet distributions is suggested, but this would in-
crease the number of parameters, and consequently increase the number of judgments to be elicited.

2.2.6.2 Using the Dirichlet distribution in multivariate elicitation for a set of proportions that
must sum up to 1

When the afore methods of elicitation using the Dirichlet distribution were suggested, Bayesian anal-
ysis was limited in that the prior distribution had to be a member of the relevant conjugate family.
Zapata-Vazqeuz et al. (2012) explain that it is now possible to elicit expert beliefs about proportions
without necessarily aiming to elicit a Dirichlet distribution, i.e. the outcome would either be that
the Dirichlet distribution is an acceptable representation of an expert’s opinion, or that no Dirichlet
distribution would adequately represent the expert’s opinion. Taking these recent developments into
account, the approach by Zapata-Vazqeuz et al. (2012) employs a technique known as “over-fitting”.
This means that when fitting the Dirichlet distribution, they elicit more judgments than necessary from
the expert. Having more elicited quantities allows the facilitator to better identify a suitable choice of
d. Over-fitting also allows the facilitator to assess the degree to which the Dirichlet distribution will
represent an expert’s judgments with a well chosen d, and thus decide whether the Dirichlet is adequate
or not. A package that employs over-fitting known as the Sheffield Elicitation Framework (SHELF)
was used to elicit a distribution for each expert judgment πi by finding the best n and assessing how
adequately the Dirichlet fits. Briefly, this procedure is as follows:

1. Preparation and training

This phase involves getting familiar with SHELF and training the experts on the elicitation
method that will be used and how to give personal probability judgments and distributions.
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2. Eliciting beta distributions for each πi using the SHELF package

This step is executed for each experts belief, πi, in turn. While incorporating over-fitting, SHELF
identifies the parameters of the respective beta distributions for the experts’ beliefs. The facil-
itator then summarises the results and gives feedback to the expert, who decides whether their
beliefs have been adequately represented. If the software failed to adequately represent their
πi’s using beta distributions then the process is terminated and it is reported that no Dirichlet
distribution can represent the expert’s judgments.

3. Checking and adjusting the means

If the process does not terminate at step 2, the means are then adjusted to conform to the con-

straint that
k

∑
i=1

πi = 1. For instance, if it is found that πi ∼ Beta(di,ei), then E(πi) =
di

di+ei
, so we

must have that
k

∑
i=1

di

di + ei
= 1. (2.22)

It is unlikely to actually obtain di and ei values that satisfy equation 2.22, so these quantities often
have to be adjusted as long as they fall in the range [0.9,1.1], otherwise the whole elicitation has
to be reviewed to identify where the expert may have misunderstood something. The sum on the
left hand side of equation 2.22 is denoted by r and as long as r 6= 1, then di and ei are adjusted as
follows:

d∗i =
di

r
, e∗i = di + ei−d∗i . (2.23)

4. Finding the best choice of n

Ideally, if the values of ni = d∗i + e∗i are all equal then the separate beta distributions correspond
to a Dirichlet distribution. In practice, these ni values are disparate so a compromise n value is
found and the Dirichlet distribution can be defined by

Di(d(n)), (2.24)

where the ith element of d(n) is given by

di(n) = n
d∗i

d∗i + e∗i
.

Choices of the optimal nopt include the following:

• A “compromised” value, i.e a strict middle value nmid =
(nmin+nmax)

2 , or the mean n̄ = ∑
ni
k ,

or the median nmed.



CHAPTER 2. EXPERT JUDGMENT ANALYSIS 32

• A “simplified optimisation”, i.e a value for n that optimises some criterion F(n) that is
based on the extent to which equation 2.24 matches the standard deviations of the individual
beta distributions elicited in step 2. The optimised value is given by

nopt =


k

∑
i=1

v∗i (ni +1)

k

∑
i=1

v∗i
√

ni +1


2

−1, (2.25)

where v∗i =
d∗i (ni−d∗i )
n2

i (ni+1)
is the variance of the ith adjusted beta distribution Beta(d∗i ,ni− d∗i ),

using equation 2.21.

• A “conservative” value, i.e n = nmin as one does not presume knowing any more about any
quantity, πi, than was elicited.

5. Providing feedback to the experts

Once the best possible n is computed, the expert is made aware of the implications of the fitted
Dirichlet distribution so he/she can decide if it is acceptable before the process is terminated by
concluding with the elicited distribution. In the event that the ni values were not originally sim-
ilar, then it is concluded that the Dirichlet will not adequately represent the expert’s knowledge
as the fit is now too poor.

2.2.6.3 Using the Dirichlet distribution in maintenance optimisation

Due to the costliness of downtime from failure on a production unit, Van Noortwijk et al. (1992) ex-
plain that it is important to figure out an optimal maintenance interval to avoid having to perform
maintenance activities too frequently. According to Van Noortwijk et al. (1992), Konink-lijke/Shell
Laboratorium in Amsterdam has been using a decision support system called PROMPT to get compo-
nent lifetime distributions towards maintenance optimisation. The challenge is that failures aren’t often
observed for well maintained systems, so there is a lack of reliable data to determine the distributions,
thus the need for the use of expert judgment analysis.

Van Noortwijk et al. (1992) initiated the use of expert judgment analysis within the maintenance en-
vironment, and they demonstrated their procedure using a single component. Their procedure involved
the histogram technique, the Supra Bayes approach and use of the Dirichlet distribution. Van Noortwijk
et al. (1992) specify that for elicitation, it is important to consider the nature of information required,
the number of available experts, the background and training of the experts, the number of variables of
interest and the speedy execution of the elicitation process. Since the facilitators needed to model how
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a component was aging, they had to use a time-based preventive maintenance policy.

The histogram technique
A challenge with elicitation is that experts have to fit an entire parametric life distribution which,

according to Van Noortwijk et al. (1992), is difficult even for experts trained in statistics. For this
reason, along with its simplicity, easy comprehension and good predictive probability, the histogram
technique was chosen to be the basis of Van Noortwijk et al. (1992)’s elicitation procedure. Using
such a discrete technique would mean the probability of failure can be displayed in fixed time intervals
versus a probability density.

Suppose the domain of lifetimes for a product has a range (0,∞). Let the domain be divided into
m disjoint time intervals so that we have (ti−1, ti] for i = 1,2, ...,m− 1, till the mth interval (tm−1,∞).
Van Noortwijk et al. (1992) explain that since maintenance engineers replace most of the components
before failure, they only have experience with the first part of the life-cycle, which necessitates the mth

interval being an open interval as it would be difficult to accurately report the tail of the lifetime cycle.
Van Noortwijk et al. (1992) deem it important to also note that in implementing the histogram tech-
nique, it is tricky to decide on a selection of m, ti and a method to obtain interval failure probabilities
from the experts. This challenge results in “a trade-off between limiting the accuracy obtained through
elicitation and requiring an accuracy from the expert which cannot be achieved”. Placing high impor-
tance on making elicitation as simple a process as possible for the experts, compromise solutions were
employed, such as choosing m = 5 as researched and advised by psychological experiments. It is also
advisable to have the intervals equidistant for better visual perception, and furthermore, have them
somewhat based on past maintenance intervals so that they are familiar to the maintenance expert.
Since components are expected to fail in the last interval, the afore-mentioned approach will likely
have a large tail that will also likely contain the optimal maintenance interval. Van Noortwijk et al.
(1992) advise that if this happens to be the case, one would have to resort to a continuous distribution.
Van Noortwijk et al. (1992) also report that using laymen terms such as “1 in a 100” (as opposed to
0.01) and allowing probabilities to be represented as percentages with n = 100 makes the elicitation
process easier for the experts.

When this article was written in 1992, it was worth noting that a computer based program that sped
up the process and gave instant on-line visual feedback accurately was key in facilitating the process
with ease. Van Noortwijk et al. (1992) encourage the presence of a trained analyst to guide the expert
while using the computer program, which would still be essential today.

The Supra Bayes approach
This approach was developed for the purposes of combining judgments from several experts and
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reaching a consensus, as explained by Van Noortwijk et al. (1992). The supra Bayes approach assesses
expert opinion by analysing and incorporating background information, i.e. the experts’ expertise, pre-
diction ability and prior information sets. When specifying a prior distribution for a quantity of interest
and deciding on a likelihood function for the experts’ judgment, this background information has to be
taken into account. The Bayes theorem is used to combine the information in the form of a posterior
distribution.

The multinomial case that arises with the use of the histogram technique requires a slight adjust-
ment of the “natural conjugate” Bayes approach (where the prior distribution is a natural conjugate of
the likelihood function to be used). Suppose in the case of maintenance optimisation, n components of
the same type are installed at time t0. The expert is asked to provide the number of components, nie,

that he or she thinks will fail in time interval i. The probability of failure within interval i is therefore
given by pie =

nie
n , i = 1, ...,m. Van Noortwijk et al. (1992) give each expert e’s likelihood as

Le(pe | pA) =
m

∏
i=1

(piA)
weβnpie =

m

∏
i=1

(piA)
weβnie , (2.26)

where we ≥ 0 is the weight of each expert determined from their prior beliefs, β is a measure
determined from the prior beliefs of all the experts as a group, pe is a vector of the subjective probability
distributions of failure specified by the experts, and pA is a vector of the probability distributions of
failure for the component. The exponent weβnie is considered to be the number of virtual observations.
Van Noortwijk et al. (1992) further define the likelihood for all available expert opinion as

L (p1, ...,pE | pA) =
E

∏
e=1

Le(pe | pA)

=
E

∏
e=1

{
m

∏
i=1

(piA)
weβnie

}

=
m

∏
i=1

(piA)

β

E

∑
e=1

wenie

, (2.27)

where the exponent β

E

∑
e=1

wenie now refers to the “number of virtual observations” for the experts

as a group, meaning β controls the magnitude. According to Van Noortwijk et al. (1992), the natural
conjugate for the multinomial likelihood, and also a well suited prior distribution for PA, is the Dirichlet
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distribution (as introduced by equation 2.20) and in this case it is given by

π(p1A, ..., pm−1A | α) =
Γ(α0)

m

∏
i=1

Γ(αi)

m

∏
i=1

pαi−1
iA , (2.28)

where αi > 0,
m

∑
i=1

αi = α0 and
m

∑
i=1

piA = 1 for i = 1, ...,m. Van Noortwijk et al. (1992) add that prior

information about the probability function could also be incorporated using the mean and variance, as
introduced in equation 2.21, using the following adaptations:

E(PiA) =
αi

α0
,

Var(PiA) =
αi(α0−αi)

α2
0 (α0 +1)

. (2.29)

So if we let the decision maker’s best guess about the true value of PA be denoted by p∗A, Van Noortwijk
et al. (1992) suggest that it may be incorporated into the prior distribution by letting αi = p∗iAα0, where
α0 controls the variance of PiA and indicates the decision maker’s strength of his/her belief in his prior
estimate of PA. The posterior distribution of PA is then calculated as being proportional to the product

of the likelihood in equation 2.27 and the prior distribution in equation 2.28, now with αi = β

E

∑
e=1

wenie.

Since
m

∑
i=1

αi = α0, and based on equation 2.29, the posterior mean is given by

E(PiA | p1, ...,pE) =

β

E

∑
e=1

wenie

m

∑
i=1

β

E

∑
e=1

wenie

=

E

∑
e=1

we pie

E

∑
e=1

we

, (2.30)

where
m

∑
i=1

nie = 1, and since the experts share, more or less, the same information the weights are

also restricted as
E

∑
e=1

we = 1. Equation 2.30 helps to derive the posterior estimate of PA, which is also

the decision maker’s consensus distribution, PD.

To combine opinions from several experts, Van Noortwijk et al. (1992) used the Supra Bayes ap-
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proach along with determining weights for the experts. To get the optimal set of weights they needed
a solution that yielded the best distribution for the decision maker. Let r≡ (r1, ...,rm) be the recorded
number of failures of the component used to calibrate the experts in time interval i, where i = 1, ...,m;
c ≡ (c1, ...,cm) be the recorded number of maintenance activities for the component used to calibrate

the experts in time interval i, where i= 1, ...,m and cm≡ 0; piD =
E

∑
e=1

we pie be the consensus probability

distribution; and the likelihood of existing failure be given by

L (r,c | pD) =
m

∏
i=1

(piD)
ri

(
m

∑
j=i+1

p jD

)ci

. (2.31)

Now letting
E

∑
e=1

we = 1, according to Van Noortwijk et al. (1992), the weights are found using

w = ARGMAX
w

{
L

(
r,c |

E

∑
e=1

wepe

)}
. (2.32)

Van Noortwijk et al. (1992) add that an alternative that is easy to obtain is using “normalised
likelihood weights” given by

we =
L (r,c | pe)

E

∑
f=1

L (r,c | p f )

e = 1, ...,E (2.33)

as good starting weight values for optimisation.

Van Noortwijk et al. (1992) explain that posterior to expert opinion, the decision maker’s distribu-
tion’s measure of β controls the variability as α0 did for PiA. β indicates the extent of the decision
maker’s belief in the consensus estimate and also “controls the sensitivity of the posterior distribution
to the sample information”. Van Noortwijk et al. (1992) further elaborate that there are two ways of
eliciting β from the decision maker. One way is to test the decision maker’s sensitivity to new infor-
mation. Using equation 2.30, p jD can be calculated for a fixed value j. The decision maker would
then have to indicate how his estimate would change if some appropriately chosen value on n∗ new
failures were observed. α0 would change to βn + n∗ and the new estimate of PjA would become
p∗jD = E(PjA | p1, ...,pE ,n∗) =

(
βn

βn+n∗

)
p jD +

(
n∗

βn+n∗

)
. Then finally the decision maker would have

to solve for β =
n∗(1−p̃ jD)

n(p̃ jD−p jD)
, where p̃ jD = p∗jD. This is executed for several different values of j to

evaluate the consistency of the decision maker. Van Noortwijk et al. (1992) describe another way to
elicit β where the decision maker gives a range R j for any PjA, which can be equated to 6 standard
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deviations R2
j = 62(Var(PjA)). Using equation 2.29, one can then solve for β = 1

n

[
36p jD(1−p jD)

R2
j

−1
]

.

Finally, Van Noortwijk et al. (1992) explain how the Bayes theorem is used to update the decision
maker’s probability distribution PD with new data. If we represent the new data as s = (s1, ...,sm)

failures and v = (v1, ...,vm) maintenance actions where vm ≡ 0, then the likelihood is given by

L (r,c | pA) =
m

∏
i=1

(piA)
si

(
m

∑
j=i+1

p jA

)vi

. (2.34)

The posterior distribution is then calculated as being proportional to the product of the likelihood

in equation 2.34 and the prior distribution in equation 2.28 with αi = β

E

∑
e=1

wenie, giving a “Generalised

Dirichlet distribution”:
m

∏
i=1

pαi+si−1
iA

(
m

∑
j=i+1

p jA

)vi

, (2.35)

with the posterior mean:

E(PiA | p1, ...,pE ,s,v) = (si +αi)

=

i−1

∏
h=1

[
m−1

∑
z=h

(αz+1 + sz+1 + vz

]
i

∏
h=1

[
m

∑
z=h

(αz + sz + vz

] i = 1, ...,m. (2.36)

Equation 2.36 is the updated probability distribution of the decision maker, in light of new data.
Van Noortwijk et al. (1992) further advise that the covariance indicates the smoothness of the posterior
distribution, while the variances are useful for determining bounds for the distribution.

2.3 Some practical uses of Expert Judgment to date

• In 2003, Aspinall (2010) put together a group of experts to discuss how water leaks into aging
dams and eventually causes failure. The experts each gave their own estimation of the time a
specific dam would take to fail once a leakage had started. Along with this estimate, to quantify
its uncertainty, each expert gave a “credible interval” that gave their true answer a lee-way of
10%. Confident experts provided very narrow ranges while the more cautious experts provided
longer time estimates with wider ranges of uncertainty. This is an example of the cognitive bias
mentioned in section 2.2.4.

Each expert then had to answer 11 seed questions in order to have their proficiency calibrated.
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Their opinions were weighted based on how they performed on the seed questions and these
weighted opinions were then combined to give a “rational consensus”. It turned out that the
more cautious experts performed better on the seed questions resulting in their estimates and
their intervals being weighted more heavily. Aspinall (2010) points out that this was one of the
advantages of using the Cooke method: these cautious experts would have been poorly repre-
sented if the more prominent experts were allowed to steer the decision, but this method encour-
ages these experts who would normally be wary of participating in policy advice by relieving
them of the “burden of sole responsibility” and reassuring them with the use of a structured,
neutral and collective procedure.

• Ryan et al. (2012) used expert judgment in the field of information security over a period of 6
months to attempt to determine:

– how often a computer or system comes under attack;

– how many of the attacks are successful;

– whether it is worthwhile to invest a lot into protecting a system from attacks; and

– the probability of a successful attack under different scenarios.

Experts were asked 31 questions, 10 of which were seed variable questions developed by infor-
mation security specialists knowing that the experts would not have direct access to the actual
answers but should have adequate knowledge to make the required assessments. Experts were
given IDs to preserve anonymity and their calibration and information scores were determined
based on their responses to the seed variable questions. The expert judgment analysis employed
the classical model through Microsoft Excel. As Cooke and Goosens (2010) suggested, the cali-
bration scores had a more pronounced range than that of the information scores since calibration
is more important.

The 31 questions included sections where the same set of questions was posed in 3 different sce-
narios. The expert distributions for questions in these sections that referred to external behaviour
unaffected by a change in scenario were identical distributions. It was also observed that dis-
tances between distributions from a scenario with security were greater than in others, indicating
that there are benefits from some protection.

The aim of this research was to show the development of prior distributions for the parameters of
Non-Homogeneous Poisson Process (NHPP) models for cyber attacks and the expert judgment
results were going to be used to develop distributions for both HPP and NHPP forms towards
this. The instrument for eliciting the expert judgments was developed and executed by two
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information security specialists and two expert judgment analysis specialists. The resultant in-
strument was then validated by a small set of information security experts.

• In the increasingly important task of assessing the risk of wire failure in modern aircraft, Maz-
zuchi et al. (2008) explain how the paired-comparison technique for expert judgment was used
to model the relationship for the probability of wire failure as a function of influencing factors
in the zonal environment of the aircraft. Expert judgment analysis was appropriated by the lack
of historical data in the field of wire failure, so a paired comparison workshop using 14 experts
from the aviation community was held to obtain relative failure rates of different environments
and ultimately express wire failure rate as a function of wiring environment.

The pdf for how long it takes wires to fail for two independent failure modes, “fail to ground”
and “fail to open”, is taken to be exponential and given by

f (ti|λi) = λie−λit , (2.37)

where the two modes are represented by i = g,o and λi > 0 is the failure rate that is usually
calculated from past data for failure mode i. Often the time to failure may be accelerated by
environmental factors and the proportional hazards model (PHM) was employed to incorporate
variables that represented the 13 environmental factors present. The failure rate in equation
2.37 was expressed as a function of the covariates using the form λ = eβ0+β1X1+...+β13X13 . The
resultant pdf was then represented as:

f (t|β0, . . . ,β13) = eβ0+∑
13
j=1 β jX j × exp{−[eβ0+∑

13
j=1 β jX j ]t}, (2.38)

where t represents the “time to failure”, X j represents the quantitative effect of covariate j and, β j

(which must be estimated from past data) represents regression parameters relating the influence
of covariate j on the failure rate.

The ratio of the total number of observed failures to the total exposure time is a common es-
timate of failure rate. The construction of this estimate requires data from all possible failure
environments which is overwhelmingly impractical, and results in a lack of data to support such
an inference, thus the use of expert judgment/subjective data. This research made use of the NEL
model (based on the paired-comparison method) by doing the following:

– Selecting a number of failure environments (of which at least one had a reasonable amount
of already existing failure data) to compare using the paired-comparison method. 15 sam-
ple environments were selected, without expert input, to be used in the elicitation. The
environment selection was based on realism, change in environment comparisons, and a
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wide coverage of possible wiring environments. The experts were asked to fill out a survey
of 105 questions that compared different environments and they had to rank the environ-
ments in each question. While being analysed for individual and group performance, 5
experts were removed for failing the test for consistency. The aim was to have the result of
this process be a set of failure rate estimates obtained to within a proportionality constant;

– The failure rate estimates were obtained using a computer program called WCOMPAR and
combined with their joint 90% bounds.The intention was to use these failure rate estimates
to determine parameter estimates of β0, . . . ,β13.

– A regression analysis was performed on the compared environments and the aim was to
then obtain a failure rate for the candidate environment that had significant exposure time
and failure data, but the process was not completed;

– The constant of proportionality for all failure rate estimates was then to be calculated using
the results of the previous two steps.

Once all the parameters were estimated, it was then possible to specify the complete failure rate
and corresponding pdf for any environment.

In conclusion, the procedure was a useful starting point for thorough risk analysis of any failure
environment and it was highlighted that the procedure produced estimates and not truths, as it
is still a new procedure to the field of aviation and observed data would be needed for proofing
purposes.

• To facilitate a multivariate elicitation process, Zapata-Vazqeuz et al. (2012) used an extension
of the SHELF package in a new method that employs over-fitting to produce either a more
carefully considered Dirichlet distribution or an alternative resolution that the Dirichlet would
not be a reasonable fit. Zapata-Vazqeuz et al. (2012)’s exercise was assessing the effectiveness
of a new antibiotic on pediatric pneumococci patients. After the administration, the possible
outcomes were: to survive in good condition (π1), to have a sequel (π2) or to die (π3); and these
proportions had to sum up to 1. As per the procedure outlined in section 2.2.6, Zapata-Vazqeuz
et al. (2012) proceeded as follows:

1. Preparation and training

The facilitator decided to use SHELF’s Quartile method for its applicable protocols on
eliciting information about a single distribution, and installed rpanel so he/she could use
SHELF’s R functions.

One expert was trained in the purposes of elicitation and how to execute probability judg-
ments, then given a practice exercise on the Quartile method. The expert was also given
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background information on the nature of the antibiotic and the resulting categorisation of
the patients.

2. Eliciting beta distributions for each πi using the extended SHELF package

For this step, unscaled (fixed lower bound of 0 and upper bound of 1) beta distributions were
fitted. Based on prior experience with a similar antibiotic, for π1, the expert gave a median
value of 0.55, an upper quartile of 0.6 and a lower quartile of 0.5. The fitted beta distribution
had parameters Beta(d1 = 25.4,e1 = 20.8), a 10th percentile of 0.46 and a 90th percentile of
0.64. Upon being given feedback of the fitted beta distribution, the expert agreed that it was
an agreeable representation of his original opinion about π1. The expert gave wider bounds
for π2 as he/she was less confident about this quantity: a median of 0.3, an upper quartile
of 0.35 and a lower quartile of 0.22. The fitted distribution was Beta(d2 = 6.51,e2 = 15.5)
with 10th and 90th percentiles of 0.18 and 0.42, respectively. For quantity π3, the expert
proposed a median of 0.15 with an upper quartile of 0.2 and a lower quartile of 0.11. The
fitted beta distribution in this instance was Be(d3 = 4.46,e3 = 23.6). The expert, again,
accepted the fitted distributions for both π2 and π3 as reasonable representations of his/her
knowledge.

3. Checking and adjusting the means

The mean values summed up to 1.004 which is very close to 1 so no adjustment was nec-
essary, i.e d∗i = di, and e∗i = ei.

4. Finding the best choice of n

Of the four possible values, nmed, nmid, n̄ and nopt , nopt = 30.975 was the chosen as the
“best” by the facilitator. This choice implied more uncertainty about π1 and less uncertainty
about π2 and π3.

5. Providing feedback to the experts

The expert decided to accept the choice of Di(d(nopt)) as an adequate representation of
his/her knowledge since the original opinions were within the range of accuracy of that
choice. The agreeable outcome of the elicitation was a Dirichlet distribution with d =

(17.03,9.162,4.923).



Chapter 3

Data analysis, results and discussion

3.1 Practical application of the classical model

In this section, we explore how to apply performance-based weighting schemes for combining expert
assessments using the classical model discussed in section 2.2.4.

We discussed 3 different types of weighting schemes: equal, global and item weighting. For equal
weighting, we assign each density a weight of 1

N for N experts; for global weighting, the weights are
determined per expert by the expert’s calibration score and overall information score; and for item
weighting, the weights are determined by the expert’s calibration score, but these are calculated per
expert and per variable. Once the weights are assigned, the actual parameters of interest are addresed
by combining the experts’ distributions for these parameters.

The following simple artificial example illustrates “global” weighting. “Equal” and “item” weight-
ing would follow a very similar execution and are thus not illustrated below.

Suppose we have 3 experts: E1, E2 and E3, and that each expert can give assessments which can
be represented by a histogram with disjoint intervals of equal width. Consider the following summary
data for E1:

Interval Frequency ( fi) Relative frequency Mid-point (xi) Cumulative frequency (Fi)
[0−20) 2 0.050 10 2

[20−40) 8 0.200 30 10
[40−60) 19 0.475 50 29
[60−80) 9 0.225 70 38

[80−100) 2 0.050 90 40
Total n = 40 Total = 1

Table 3.1: Histogram for expert E1’s assessments

42



CHAPTER 3. DATA ANALYSIS, RESULTS AND DISCUSSION 43

Figure 3.1: Relative Frequency Polygon for expert E1

Parameter Calculation

Mean
1
N ∑ fixi = 50.5

Variance
1
N ∑(xi− x̄)2 = 100.03125

Quartiles

Qk = Li +
k
4N−Fi−1

fi
ai wherek = 1,2,3

k
4

N =
1
4

40 = 10th :Q1 = 40

k
4

N =
2
4

40 = 20th :Q2 = 50.5263

k
4

N =
3
4

40 = 30th :Q3 = 62.2222

Percentiles (5th,50th and 95th)

qk = Li +
k

100N−Fi−1

fi
ai wherek = 5,50,95

k
100

N =
5

100
40 = 2nd :q5 = 20

k
100

N =
50

100
40 = 20th :q50 = 50.5263

k
100

N =
95

100
40 = 38th :q95 = 80
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Next, we calculated the relative information for E1 as per equation 2.9:

pi interval number of observed values in interval i si

0.05 0−20 1 s1 =
1

12 = 0.0833

0.45 20−50.5263 5 s2 =
5

12 = 0.4167

0.45 50.5263−80 4 s3 =
4

12 = 0.3333

0.05 80−100 2 s4 =
2

12 = 0.1667

Total = 12 seed values

Therefore, the relative information, I(s, p), is given by:

I(s, p) =
4

∑
i=1

ln(si/pi) = ln
(

0.0833
0.05

)
+ ln

(
0.4167
0.45

)
+ ln

(
0.3333
0.45

)
+ ln

(
0.1667
0.05

)
= 1.3377

Calculating E1’s calibration score using equation 2.10 yields:

2NI(s, p) = 2(12)(1.3377) = 32.1048 and
P(X2

(3) > 32.1048)≈ 0.

Thus in a case like this, E1 will not be used. We, however, continue with this example to illustrate
how the rest of the process is applied.

Now to calculate the information, suppose the known value of the seed variable is r = 25. Also,
suppose that a similar procedure to the one illustrated above was employed for experts E2 and E3, and
their 5th percentiles were reported as 23 and 25 respectively, while their 95th percentiles were reported
as 85 and 75 respectively. The lower and upper quantiles as seen in equation 2.11 are therefore given
by

qL = min{r,q5,1, . . . ,q5,e}

= min{25,20,23,25}

= 20,

qU = max{r,q95,1, . . . ,q95,e}

= max{25,80,85,75}

= 85.

For expert E1, supposing the analyst chose a k% over shoot value of k= 10.8333, we could calculate
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the 0th and 100th percentiles in equation 2.12 as follows:

q0 = q5− (k/100)(qU −qL)

= 20− (10.8333/100)(80−20)

= 13.5,

q100 = q95 +(k/100)(qU −qL)

= 80+(10.8333/100)(80−20)

= 86.5.

Calculating expert E1’s information score (assuming a uniform distribution) as directed by equation
2.14 yields:

h1 = FU(q5)−FU(q0) =
q5−q0

q100−q0
=

20−13.5
86.5−13.5

= 0.0890,

h2 = FU(q50)−FU(q5) =
q50−q5

q100−q0
=

50.5263−20
86.5−13.5

= 0.4182,

h3 = FU(q95)−FU(q50) =
q95−q50

q100−q0
=

80−50.5263
86.5−13.5

= 0.4037,

h4 = FU(q100)−FU(q95) =
q100−q95

q100−q0
=

86.5−80
86.5−13.5

= 0.0890,

∴ In f = I(h, p) =
4

∑
i=1

pi(pi/hi)

= 0.05
(

0.05
0.0890

)
+0.45

(
0.45

0.4182

)
+0.45

(
0.45

0.4037

)
+0.05

(
0.05

0.0890

)
= 1.0420 .

Below is a summary of the calculations for expert E1 :
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q5 = 20 ; s1 = 0.0833

q50 = 50.5263 ; s2 = 0.4167

q95 = 80 ; s3 = 0.3333

s4 = 0.1667

I(s, p) = 1.3631

2NI(s, p) = 32.1048

Cal = P(X2
(3) > 32.1048)≈ 0

In f = 1.042 .

Similar summaries can be shown for experts E2 and E3 using artificial estimates of the quantiles q5

and q95, and the si’s. For expert E2 :

q5 = 23 ; s1 = 0.042

q50 = 50.5263 ; s2 = 0.458

q95 = 85 ; s3 = 0.44

q0 = 16.5 ; s4 = 0.06

q100 = 91.5

I(s, p) = ln
(

0.042
0.05

)
+ ln

(
0.458
0.45

)
+ ln

(
0.44
0.45

)
+ ln

(
0.06
0.05

)
= 0.0031

2NI(s, p) = 24(0.0031) = 0.0744

Cal = P(X2
(3) > 0.0744) = 0.9947 (a high calibration score)

In f = 0.05

(
0.05

23−16.5
91.5−16.5

)
+0.45

(
0.45

50.5263−23
91.5−16.5

)
+0.45

(
0.45

85−50.5263
91.5−16.5

)
+0.05

(
0.05

91.5−85
91.5−16.5

)
= 1.05;

and for expert E3 :
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q5 = 25 ; s1 = 0.07

q50 = 50.5263 ; s2 = 0.43

q95 = 75 ; s3 = 0.46

q0 = 18.5 ; s4 = 0.04

q100 = 81.5

I(s, p) = ln
(

0.07
0.05

)
+ ln

(
0.43
0.45

)
+ ln

(
0.46
0.45

)
+ ln

(
0.04
0.05

)
= 0.0898

2NI(s, p) = 24(0.0898) = 2.1552

Cal = P(X2
(3) > 2.1552) = 0.5406(an average calibration score)

In f = 0.05

(
0.05

25−18.5
81.5−18.5

)
+0.45

(
0.45

50.5263−25
81.5−18.5

)
+0.45

(
0.45

75−50.5263
81.5−18.5

)
+0.05

(
0.05

81.5−75
81.5−18.5

)
= 1.07.

Now we can calculate the weights using α = 0.05; and letting 1α = 0 if the calibration score is less
than α, and 1 otherwise:

wα(e) = 1α(calibrationscore)× calibrationscore(e)× in f ormationscore(e)

∴ ForE1 : wα(e) = 0(0)(1.042) = 0

ForE2 : wα(e) = 1(0.9947)(1.05) = 1.0444

ForE3 : wα(e) = 1(0.5406)(1.07) = 0.5784 .

To finally calculate the decision maker score, we first to need to calculate fe,i as per equation 2.8
for each expert. We show how to obtain this value for E1, and artificial values are assigned to E2 and
E3.
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Figure 3.2: Expert E1’s density function

Figure 3.2 shows that f1,i = 0.13. Assuming f2,i = 0.26 and f3,i = 0.19, we can calculate the DM
score using equation 2.16 as follows:

DMα(i) =

∑
e=1,...,E

wα(e) fe.i

∑
e=1,...,E

wα(e)

=
0(0.13)+1.0444(0.26)+0.5784(0.19)

1.0444+0.5784
= 0.2351 .

Therefore, 0.2351 is the global weight combined DM score where our choice of α maximises the
product of the calibration and the information score.



Chapter 4

Conclusion

The traditional committee method and the Delphi method are both “census” methods of expert elicita-
tion. They employ behavioural aggregation methods and, as a result, are prone to psychological bias.
For this reason, they are no longer popular methods of expert judgment analysis.

Paired comparison methods such as the Negative Exponential Life (NEL) model are more popular
as they are quite thorough in ensuring that all possible pairs are compared and ranked, and the compar-
isons can be further reduced into an interval or ratio scale. In section 2.2.3, the use of an illustration
of how the NEL model can be applied enabled us to develop formulas that can be used to represent
“no agreement” and “total agreement”, which can be found in equations 2.2 and 2.3, respectively.
Furthermore, we were able to relate the coefficients of concordance (w and w′) for a small and large
number of items (n) being compared among some experts (e) using w = kw′, where k = 1

e(n−1) . The
extensive comparing done in this method, however, opens it up to issues of redundancy, and as with
the traditional committee method and the Delphi method, there is no assessment of uncertainty that is
carried out.

Cooke’s classical model results in “rational consensus” since the experts are judged on their ability
to judge uncertainties, and this is what makes it the most widely used technique to date. It employs
mathematical aggregation techniques to combine expert opinion and does not aim to impose agreement
but rather to quantify and combine opinions on uncertainty. The illustration of this model performed in
chapter 3 showed that it is a method that is carried out step by step, thus allowing disparities of opinion
and loopholes in the experts’ knowledge to be discovered early. The experts’ calibration/accurateness
and informativeness are weighted and combined to ultimately produce a Decision Maker (DM) score
of the uncertainty regarding the unknown variable. Cooke’s method is regarded as “classical” as it is a
frequentist approach to expert judgment analysis.

In the increasingly popular Bayesian approach, after giving their opinions about the unknown vari-
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able, experts are further allowed to assess other experts’ opinions and adjust their estimates. The first
revision of estimates is said to produce “improved estimators”, and any further revisions produce mere
“compromise estimators”, as shown by the illustration performed in section 2.2.5. In this approach,
consensus refers to the revision with the smallest distance between the maximum and minimum esti-
mates of a parameter. During this process, it is unlikely that experts will achieve the same estimate,
rather, each expert’s estimate will converge to an unbiased variation of the other experts’ original opin-
ions, as illustrated by the example in section 2.2.5.

The Dirichlet distribution is becoming a common tool in multivariate elicitation tasks where the
facilitator needs information about a set of proportions that must sum up to 1. This distribution, un-
fortunately, only has one parameter (n, the sum of the uncertain quantities) that controls uncertainty
and also measures the experts’ informativeness. A technique called overfitting is used to elicit more
judgments than needed from the expert in order to better identify an appropriate choice of d, the pa-
rameter vector of uncertain quantities. In maintenance optimisation, the histogram technique is used
to display the distribution of the probabilities of failure in fixed time intervals as it is easier than trying
to fit an entire parametric life distribution. In multinomial cases, the Supra Bayes approach is then
used to combine the likelihood function for the expert judgments while incorporating their background
information, with a prior distribution for the quantity of interest, to ultimately obtain a Generalised
Dirichlet distribution as a posterior distribution. It is also now acceptable to not necessarily aim to fit
the Dirichlet distribution to an expert’s beliefs, and to reach a final resolve that no Dirichlet distribution
was an acceptable representation of an expert’s opinion.

Areas of further research
When uncertainty is quantified, it is always conditional on something that can be elicited from its

background information. Cooke and Goosens (2010) write that a “case structure” is in place during the
elicitation process to ensure that this background information is assessed in a way that does not intro-
duce too much “noise” into the process from the various different backgrounds of the experts. Since
it is difficult to exhaust the list of all possible relevant variables, uncertainties due to any unknown
values of unspecified variables are “folded into” the uncertainties of the target variables. Cooke and
Goosens (2010) warn that this can cause dependencies in the target variables’ uncertainties and dealing
with dependence is an area still under development. For now, experts are asked to identify groups of
variables that may have significant dependence when specifying their subjective distributions.

There also needs to be more research towards the appropriate construction and use of seed ques-
tions. Further research could explore constructing seed questions carefully such that they weed out
some of the structural bias present in expert selection as discussed in section 2.2.4.
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Zapata-Vazqeuz et al. (2012) suggest that more could be explored in the area of multivariate elici-
tation of a joint distribution for a set of proportions, besides using the Dirichlet distribution as it does
not always prove to be adequate.
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