
Prediction of Protein Secondary
Structure using Binary Classification
Trees, Naive Bayes Classifiers and the

Logistic Regression Classifier

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in the

DEPARTMENT OF STATISTICS

of

RHODES UNIVERSITY

by

Ahmed Abdelkarim Eldud Omer

January 2015

Abstract
The secondary structure of proteins is predicted using various binary classifiers. The data

are adopted from the RS126 database. The original data consists of protein primary and

secondary structure sequences. The original data is encoded using alphabetic letters. These

data are encoded into unary vectors comprising ones and zeros only. Different binary classifiers,

namely the naive Bayes, logistic regression and classification trees using hold-out and 5-fold

cross validation are trained using the encoded data. For each of the classifiers three classification

tasks are considered, namely helix against not helix (H/∼H), sheet against not sheet (S/∼S)

and coil against not coil (C/∼C). The performance of these binary classifiers are compared

using the overall accuracy in predicting the protein secondary structure for various window

sizes.

Our result indicate that hold-out cross validation achieved higher accuracy than 5-fold cross

validation. The Naive Bayes classifier, using 5-fold cross validation achieved, the lowest accu-

racy for predicting helix against not helix. The classification tree classifiers, using 5-fold cross

validation, achieved the lowest accuracies for both coil against not coil and sheet against not

sheet classifications. The logistic regression classier accuracy is dependent on the window size;

there is a positive relationship between the accuracy and window size. The logistic regression

classier approach achieved the highest accuracy when compared to the classification tree and

Naive Bayes classifiers for each classification task; predicting helix against not helix with accu-

racy 77.74%, for sheet against not sheet with accuracy 81.22% and for coil against not coil with

accuracy 73.39%. It is noted that it is easier to compare classifiers if the classification process

could be completely facilitated in R. Alternatively, it would be easier to assess these logistic

regression classifiers if SPSS had a function to determine the accuracy of the logistic regression

classifier.

Keywords: Classification tree, Naive Bayes, logistic regression, hold-out, 5-fold cross validation,

protein secondary structure prediction

Contents

Abstract i

List of Tables vi

List of Figures viii

1 Outline 1

1.1 Framework . 1

1.2 Research Background . 1

1.3 Goal of the Research . 2

1.4 Introduction . 2

2 Classification 3

2.1 Introduction . 3

2.2 Classification . 3

2.3 Measurement of Classifier Accuracy . 4

2.4 Measurement of Binary Classifier Accuracy . 6

2.5 Cross Validation . 9

2.5.1 k-fold Cross Validation . 10

2.5.2 Hold-Out Cross Validation . 11

2.5.3 Leave-One-Out Cross Validation . 12

3 Classification Using the Naive Bayes and Logistic Regression Classifiers 15

3.1 Introduction . 15

3.2 Classifiers Based on Bayes Rule . 15

iii

3.2.1 Estimating the Prior Probability . 17

3.2.2 Estimating the Likelihood . 17

3.3 Naive Bayes Classifier . 18

3.3.1 Estimating the Maximum Likelihood for Naive Bayes Classifier 19

3.4 Logistic Regression . 20

3.4.1 The Logistic Regression Model . 20

3.4.2 Estimation of the Logistic Regression Model Parameters 23

3.4.2.1 The Newton Raphson Method 25

3.4.3 Using Logistic Regression as a Classifier 28

4 Classification Trees 31

4.1 Introduction . 31

4.2 Binary Classification Trees . 31

4.3 Impurity Functions . 32

4.3.1 Node Impurity . 32

4.3.2 Tree Impurity . 33

4.4 Splitting Rules . 34

4.4.1 Gini Index . 34

4.4.2 Entropy Index . 38

4.5 Splitting Procedure . 39

4.5.1 Maximum Tree . 40

4.6 Pruning a Tree . 41

4.6.1 Cost Complexity Pruning . 41

4.7 Cross Validation . 45

5 Prediction of the Protein Secondary Structure 47

5.1 Introduction . 47

5.2 Proteins and Amino Acids . 47

5.3 Protein Structure and Function . 49

5.4 Secondary Structure Prediction . 50

5.5 The RS126 Data Set . 50

5.6 Prediction of Protein Secondary Structure using Classification Trees 55

5.6.1 Hold-Out Classification . 55

5.6.1.1 Data Set Partition and Application 55

5.6.1.2 Classification Tree Accuracy Using Hold-Out Cross Validation 55

5.6.2 5-fold Cross Validation . 56

5.6.2.1 Data Set Partition and Application 56

5.6.2.2 Classification Tree Accuracy Using 5-fold Cross Validation . . . 57

5.7 Prediction of Protein Secondary Structure using Naive Bayes Classifiers 58

5.7.1 Hold out classification . 58

5.7.1.1 Data Set Partition and Application 58

5.7.1.2 Naive Bayes Classifier Accuracy Using Hold-Out Cross Validation 58

5.7.2 5-fold Cross Validation . 60

5.7.2.1 Data Set Partition and Application 60

5.7.2.2 Naive Bayes Classifier Accuracy using 5-fold Cross Validation . 60

5.8 Prediction of Protein Secondary Structure using Logistic Regression Classifiers . 61

5.8.1 Hold-Out Cross Validation . 61

5.8.1.1 Data Set Partition and Application 61

5.8.1.2 Logistic Regression Classifier Accuracy 62

5.8.2 5-fold Cross Validation . 63

5.8.2.1 Data Set Partition and Application 63

5.8.2.2 Logistic Regression Classifier Accuracy Using 5-fold Cross Val-

idation . 63

5.9 Comparison of the Naive Bayes, Classification Tree and Logistic Regression Clas-

sifiers . 65

5.9.1 Helix against not Helix . 65

5.9.2 Coil against not Coil . 67

5.9.3 Sheet against not Sheet . 70

6 Conclusion 75

6.1 Introduction . 75

6.2 Conclusions and Discussion . 75

6.3 Future Study . 77

Bibliography 78

Appendix A Classification Trees: Hold-Out Cross Validation 83

Appendix B Classification Trees: 5-fold Cross Validation 87

Appendix C Naive Bayes: Hold-Out Cross Validation 93

Appendix D Naive Bayes: 5-fold Cross Validation 97

Appendix E Logistic Regression: Hold-Out Cross Validation 101

Appendix F Logistic Regression: 5-fold Cross Validation 103

Appendix G Confidence Interval: R Code 105

List of Tables

2.1 Possible outcomes of the classification of a binary variable. 6

2.2 A confusion matrix for the classification of n binary observations. 7

2.3 10-fold cross validation (iteration process). 11

2.4 Hold-out cross validation. 12

2.5 Leave one out cross validation. 13

4.1 Classification table: The binary split of Y for variable xj 31

4.2 The Gini split and goodness of the split in the non-terminal nodes in the tree

depicted in figure 4.4.2. 38

4.3 The Entropy split and goodness of the split in the non-terminal nodes in the tree

depicted in figure 4.4.2. 39

5.1 Amino acid abbreviations. 48

5.2 The actinoxanthin (1acx.concise) entry in the RS126 data set. 51

5.3 The amino acid encoding matrix. 52

5.4 The secondary structure encoding. 52

5.5 The first four observations of the actinoxanthin (1acx.concise) sequence as con-

sidered in this study. 53

5.6 Encoding of the actinoxanthin (1acx.concise) entry for a window of size 3. 53

5.7 Test accuracy (%) of the classification trees. 56

5.8 Test accuracy (%) of the classification trees using 5-fold cross validation. 57

5.9 Test accuracy (%) of the Naive Bayes classifier. 59

5.10 Test accuracy (%) of the Naive Bayes classifiers using 5-fold cross validation. . 60

5.11 Test accuracy (%) of the logistic regression classifier. 63

5.12 Test accuracy (%) of the logistic regression classifier using 5-fold cross validation. 64

vii

5.13 Test accuracy (%), for all window sizes, when predicting helix against not helix

for the Naive Bayes, classification tree and logistic regression classifiers using

hold-out or 5-fold cross validation. 65

5.14 Summary of the test accuracy (%), amoungst all window sizes, when predict-

ing helix against not helix for the Naive Bayes, classification tree and logistic

regression classifiers using hold-out or 5-fold cross validation. 66

5.15 Test accuracy (%), for all window sizes, when predicting coil against not coil

for the Naive Bayes, classification tree and logistic regression classifiers using

hold-out or 5-fold cross validation. 68

5.16 Summary of the test accuracy (%), amoungst all window sizes, when predicting

coil against not coil for the Naive Bayes, classification tree and logistic regression

classifiers using hold-out or 5-fold cross validation. 68

5.17 Test accuracy (%), for all window sizes, when predicting sheet against not sheet

for the Naive Bayes, classification tree and logistic regression classifiers using

hold-out or 5-fold cross validation. 71

5.18 Summary of the test accuracy (%), amoungst all window sizes, when predict-

ing sheet against not sheet for the Naive Bayes, classification tree and logistic

regression classifiers using hold-out or 5-fold cross validation. 71

6.1 Comparison of the effect of change in window size on logistic regression and

support vector machine Hua and Sun (2001). 76

6.2 Comparison of the logistic regression result with support vector machine using

result of Hua and Sun (2001)and Tsilo (2009). 77

List of Figures

3.4.1 Odds, logit and probability . 22

4.2.1 A figure depicting the root node, non-terminal and terminal nodes of a classifi-

cation tree. 32

4.4.1 Binary split the node t1. 36

4.4.2 An example of a binary tree. 37

4.6.1 The maximum tree, T0. 42

4.6.2 Sub-tree T1. 43

4.6.3 Sub-tree T3. 43

4.6.4 Sub-tree T1. 44

4.6.5 Sub-tree T2. 45

4.6.6 Sub-tree T4. 45

5.2.1 An example of a protein amino acid structure. 48

5.2.2 The four levels of protein structure (From Boundless, 2014). 49

5.5.1 Creating the data set for a window of size 3 (From Baxter and Jäger, 2011). . . 54

5.6.1 Test accuracy (%) of the classification trees. 55

5.6.2 Test accuracy (%) of the classification trees using 5-fold cross validation. 57

5.7.1 Test accuracy (%) of the Naive Bayes classifier. 59

5.7.2 Test accuracy (%) of the Naive Bayes classifier using 5-fold cross validation. . . 61

5.8.1 Test accuracy (%) of the logistic regression classifier. 62

5.8.2 Test accuracy (%) of the logistic regression classifier using 5-fold cross validation. 64

5.9.1 Comparison of the test accuracies (%) for predicting helix against not helix for

each of the Naive Bayes, classification tree and logistic regression classifiers using

hold-out or 5-fold cross validation. 66

ix

5.9.2 Heuristic confidence intervals: Comparison of the test accuracies (%) for pre-

dicting helix against not helix for each of the Naive Bayes, classification tree and

logistic regression classifiers using 5-fold cross validation. 67

5.9.3 Comparison of the test accuracies (%) for predicting coil against not coil for

each of the Naive Bayes, classification tree and logistic regression classifiers using

hold-out or 5-fold cross validation. 69

5.9.4 Heuristic confidence intervals: Comparison of the test accuracies (%) for pre-

dicting coil against not coil for each of the Naive Bayes, classification tree and

logistic regression classifiers using hold-out or5-fold cross validation. 70

5.9.5 Comparison of the test accuracies (%) for predicting sheet against not sheet for

each of the Naive Bayes, classification tree and logistic regression classifiers using

hold-out or 5-fold cross validation. 72

5.9.6 Heuristic confidence intervals: Comparison of the test accuracies (%) for predict-

ing sheet against not sheet for each of the Naive Bayes, classification tree and

logistic regression classifiers using hold-out or 5-fold cross validation. 73

Acknowledgments
I would like to thank my supervisor, Mr Jeremy Baxter, for the patient guidance, encouragement

and advice he has provided throughout my time as his student. I have been extremely lucky to

have a supervisor who cared so much about my work, and who responded to my questions and

queries so promptly. I would like to thank Professor Sarah Radloff, for giving me a chance to

be a student at Rhodes University, and also for her patient guidance and unwavering support

through out my study.

I would also like to thank all the members of the Statistics Department at Rhodes University

and also those at the University of the Western Cape for all the support they gave me through

out my study.

I would also like to acknowledge the support I got from my friends.

Finally, I must express my very profound gratitude to my family especially my mother, brothers

(Nasreldein, Mohamed and Ibrahim) and sisters for providing me with unfailing support and

continuous encouragement throughout my years of study and through the process of researching

and writing this thesis. This accomplishment would not have been possible without them.

Thank you.

Chapter 1

Outline

1.1 Framework

This study considers how a researcher might predict the secondary structure of proteins based

on the proteins primary structure. Statistical classification, measures of classifier accuracy and

cross validation are introduced and discussed in chapter 2. Chapter 3 discusses how Bayes rule

can be used to construct the Naive Bayes classifier and how logistic regression can be utilised

to construct a classifier. Classification trees are defined and discussed in chapter 4. Chapter 5

describes the structure of proteins and how the data set used in this study was processed for

supervised classification. The results of the various classifiers, using hold-out and 5-fold cross

validation, are reported and discussed. These classifiers are compared in the context of this

particular data set. Chapter 6 compares these results to those of other researchers. Appendices

A to G contain the relevant R code used in this study.

1.2 Research Background

Protein secondary structure prediction is the prediction of the secondary structure of a protein

based on the primary structure that is from the linear sequence of amino acids. The prediction of

the secondary structure depends on the amino acids sequence. An aim of theoretical chemistry

and bioinformatics is to predict the sequence of the protein structure from the primary structure

(Zhang and Rajapakse, 2009). Some of the computationally based methods that can be used to

predict the secondary predictions include Naive Bayes, logistic regression classifier, classification

trees, neural networks, support vector machines and nearest neighbor methods (Singh et al.,

2008).

1

Chapter 1 Outline 2

1.3 Goal of the Research

The aim of this study is to predict the secondary structure of the proteins using three classifi-

cation approaches, namely the classification tree, Naive Bayes and logistic regression classifiers.

This study assesses the performance of these classifiers using hold-out and 5-fold cross valida-

tion. To achieve these objectives, R and SPSS are used to perform the calculations relevant to

this study.

1.4 Introduction

The objective of this study is to train classification tree, Naive Bayes and logistic regression

classifiers based on a sequence of protein primary structure in order to predict the proteins

secondary structure. The data used in this study consist of 126 proteins available in the Rost

and Sander database (Rost and Sander, 1993) available from http://www.anteprot-pbil.

ibcp.fr/. As discussed in section 5.5, this data set contains the proteins name and the primary

and secondary structure sequence of each protein.

The data processing is done in steps: The first step performed is pre-processing. The data is

presented as letters and the purpose of pre-processing is to convert the letters into numbers.

To achieve this, the orthogonal coding scheme (Holley and Karplus, 1989) is used. The second

step is to assign the secondary structure. Secondary structures are classified into 8 categories,

namely α-helix (H), 310-helix (G), π-helix (I), β-strand (E), isolated β-bridge (B), turn (T),

bend (S) and rest (-) where the last category is for unclassified structures. Section 5.5 indicates

how these structures are reduced to 3 categories, namely helix (H), sheet (E) and coil (C).

SPSS and R, statistical software, are used to fit and assess the performance or accuracy of the

various classifiers used in this study. Hold-out and 5-fold cross validation are used to estimate

the performance of each of the classifiers, namely the classification tree (section 5.6), Naive

Bayes (section 5.7) and logistic regression (section 5.8) classifiers. The classification tree, Naive

Bayes and logistic regression classifiers are compared in section 5.9 using the overall accuracy

measure as defined and discussed in section 2.4. These results are compared to those of other

researchers in chapter 6.

Chapter 2

Classification

2.1 Introduction

Section 2.2 introduces classification in a mathematical context. Section 2.3 defines and dis-

cusses various measures of classifier accuracy. Section 2.4 discusses these measures for binary

classifiers. The cross validation approach to assessing classifier accuracy is discussed in section

2.5.

2.2 Classification

Classification is an important technique that is used in statistics. Classification is sometimes

known as statistical pattern recognition or discrimination (Breiman et al., 1984). When mod-

eling the relationship between the response variable denoted by y, and the predictor variable

denoted by x = (x0, x1, x2, ..., xp)
′ , where xǫRp+1, the predictors may either be continuous or

discrete random variables. If the response variable is continuous the modeling process is termed

regression modeling. If the response variable is categorical the modeling process termed clas-

sification modeling (Izenman, 2009; Han and Micheline, 2006). In classification the response

variable is labeled as belonging to one of L classes. There is often no natural ordering to these

classes, but they are labeled as 1, 2, ..., L, where L is the number of classes. When there are

more than two classes, that is when L > 2, the modeling is called multi-class classification.

This report focuses on binary variable classification, that is where there are two classes. The

class labels are commonly taken to be yǫ {0, 1}. It is assumed that the response variable is in-

fluenced by the associated predictor variables, x. The classification is a conditional distribution

where the response variable is binary, where p(y = 1 | x) = 1− p(y = 0 | x), and hence follows

a Bernoulli distribution with parameter β, which denotes the probability of 1:

3

Chapter 2 Classification 4

p(y | β) = βy(1− β)1−y where y = 0, 1

The response or dependent variable is affected by the predictor or independent or feature or

attribute variables, x = (x0, x1, x2, ..., xp)
′ where p is the number of predictor or independent

variables in the data set. Classification models can be used to predict the class of unknown

observations. The goal is to build a model and use this model to predict which category a new

subject or object belongs to. Thus the purpose of classification is to build a model which can

be used for predicting the class label for an observation based on the values of the attributes

or independent variables.

2.3 Measurement of Classifier Accuracy

There are several accuracy measures of classifier accuracy for instance specificity, sensitivity,

misclassification and accuracy rate (Zaki and Meira Jr, 2014). Accuracy measures are de-

signed to focus on specific aspects of a classifiers accuracy, for example the overall classification

accuracy (Labatut and Cherifi, 2012; Foody, 2002).

Denote the true or observed class of an observation as yi and the associated observations of the

independent or predictor variables as xi ∈ R
p+1. Consider a classifier, denoted by M , which is

simply a function or rule that assigns to xi a class label denoted by ŷi, that is

M : xi 7−→ ŷi = f (xi)

Let I denote an indicator function that has value 1 when the argument is true and 0 otherwise.

For each observation (xi, yi) and associated predicted class label, ŷi, where i = 1, . . . , n, an

indicator function can be used to denote a misclassification as follows

I (yi 6= ŷi) =

{
1 if ŷi 6= yi

0 if ŷi = yi

or a correct classification as

I (yi = ŷi) =

{
1 if ŷi = yi

0 if ŷi 6= yi

The error rate (Zaki and Meira Jr, 2014, page 603) or misclassification error rate is the fraction

of incorrect predictions for the classifier over a data set. The error rate is defined in terms of

the indicator function as

Error rate =
1

n

n∑

i=1

I (yi 6= ŷi)

5 2.3. Measurement of Classifier Accuracy

The error rate is an estimate of the probability of misclassification and hence the lower the

error rate the better the classifier. The accuracy of a classifier (Zaki and Meira Jr, 2014, page

603) is the fraction of correct predictions over a data set and is defined in terms of the indicator

function as

Accuracy =
1

n

n∑

i=1

I (yi = ŷi)

= 1− Error rate

The lower the misclassification error rate the higher the accuracy. Accuracy estimates the

probability of a correct prediction and hence the higher the accuracy the better the classi-

fier. Classifiers with smaller misclassification error rates, or equivalently higher accuracy, are

preferred (Zaki and Meira Jr, 2014, page 602).

The error rate and the accuracy rate are global or overall measures that do not explicitly

consider the classes that contribute to the error. This more detailed information can be as-

sessed or measured by tabulating the class specific agreement and disagreement between the

true or observed labels and the predicted labels. Accuracy can thus be assessed or mea-

sured using a contingency table which is often termed the confusion or error matrix (Sam-

mut and Webb, 2011; Zaki and Meira Jr, 2014, page 604). Consider a set of n observations

of the predictor variables, xi, with true or observed class labels, yi, a classifier M with as-

sociated predicted class labels ŷi where there are L classes, l ∈ {0, . . . , L}. Denote the

observed data as X = {(x1, y1) , (x2, y2) , . . . (xn, yn)} and the associated predicted data as

X⋆ = {(x1, ŷ1) , (x2, ŷ2) , . . . (xn, ŷn)}.

Partition or group the observed data according to the class labels, that is partition the n

observations into L classes denoted as D = {D1, D2, . . . , DL} where Dl = {xi, yi = l}. Let

R = {R1, R2, . . . , RL} denote the set of grouped or partitioned data according to the predicted

class labels, where Rl = {xi, ŷi = l}. Let dl = |Dl| denote the size of the true class l and

rl = |Rl| denote the size of the observed class l. Cross tabulate R and D into a L by L

cross-tabulation table, where the entries in the table, denoted by njk, are given by

njk = |Rj ∩Dk| = |{ŷi = j ∩ yi = k,xi ∈ D}|

where j and k denote the class labels (Zaki and Meira Jr, 2014, page 604). Thus if there are L

classes then the confusion matrix is an L by L matrix where the columns denote the observed

or true class label and the rows represent the predicted or hypothesized class label (Fawcett,

2006). A confusion matrix therefore represents the cross count between the predicted class

labels and the actual observed class labels.

Chapter 2 Classification 6

2.4 Measurement of Binary Classifier Accuracy

Consider a binary classifier which maps each instance or observation, yi, to one and only one

of two classes, labeled either positive or negative, denoted by ŷi ∈ {0, 1}. As shown in table

2.1, for each observation there are four possible outcomes (Fawcett, 2006):

• If the observation is positive and it is classified or predicted as positive it is termed a true

positive;

• If the observation is positive and it is classified or predicted as negative, it is termed a

false negative;

• If the observation is negative and it is classified or predicted as negative, it is termed a

true negative;

• If the observation is negative and it is classified or predicted as positive, it is termed a

false positive.

In this context the confusion matrix is 2 by 2 matrix,

[
n00 n01

n10 n11

]
, for a set of observations

as represented in table 2.2. Each entry in the matrix, denoted by njk, where j = 0, 1 and

k = 0, 1, indicates the total number of observations of class k which were assigned to or labeled

by the classifier to class j. n++, or just n, denotes the total number of the observations. n00

denotes the number of true positives (TP), n11 denotes the number of true negatives (TN), n01

denotes the number of false positives (FP) and n10 denotes the number of false negatives (FN).

nj+ represents the total number of observations predicted in class j, n+k represents the total

number of the observations observed to be in class k. These frequencies can be expressed in

terms of the indicator notation as follows

n00 =
1

n

n∑

i=1

I (yi = ŷi = 0) n11 =
1

n

n∑

i=1

I (yi = ŷi = 1)

n10 =
1

n

n∑

i=1

I (ŷi = 1, y1 = 0) n01 =
1

n

n∑

i=1

I (ŷi = 0, y1 = 1)

where the indicator function I has value 1 when its argument is true and 0 otherwise.

Table 2.1: Possible outcomes of the classification of a binary variable.

Observed Class
yi

Predicted Positive: yi = 0 Negative: yi = 1
Class Positive: ŷi = 0 True Positive (TP) False Positive (FP)
ŷi Negative: ŷi = 1 False Negative (FN) True Negative (TN)

Total Positives (P) Negatives (N)

7 2.4. Measurement of Binary Classifier Accuracy

Table 2.2: A confusion matrix for the classification of n binary observations.

Observed Class
yi

Predicted Positive: yi = 0 Negative: yi = 1 Total
Class Positive: ŷi = 0 n00 n01 n0+ = n00 + n01

ŷi Negative: ŷi = 1 n10 n11 n1+ = n10 + n11

Total n+0 = n00 + n10 n+1 = n01 + n11 n = n++

Various accuracy metrics for binary classification utilize the confusion matrix. The error rate

or misclassification error rate or inaccuracy is defined as the probability of an incorrect classi-

fication and is estimated (Han and Micheline, 2006; Zaki and Meira Jr, 2014) as

Error rate =
False positives (FP) + False negatives (FN)

Total observations

=
n01 + n10

n++
=

n01 + n10

n

=
1

n

n∑

i=1

I (ŷi 6= yi)

=
1

n

n∑

i=1

I (ŷi = l, yi 6= l, l = {0, 1})

∴ Misclassification error rate = 1− Accuracy.

For a binary classifier the accuracy is defined as the probability of correct classification and is

estimated (Fawcett, 2006) as

Accuracy =
n00 + n11

n++

=
n00 + n11

n

=
1

n

n∑

i=1

I (ŷi = yi)

=
1

n

n∑

i=1

I (ŷi = l, yi = l, l ∈ {0, 1}) .

The true positive rate, sensitivity or hit rate or recall, denoted as tp rate, of a binary classifier

is estimated (Fawcett, 2006) as

Sensitivity or tp rate =
Positives correctly classified (TP)

Total positives (P)

=
n00

n00 + n10

=
n00

n+0

.

Chapter 2 Classification 8

The false positive rate or false alarm rate, denoted as fp rate, of a binary classifier is estimated

(Fawcett, 2006) as

fp rate =
Negatives incorrectly classified (FP)

Total negatives (N)

=
n01

n01 + n11
=

n01

n+1
.

For a binary classifier the true negative rate or specificity is estimated (Fawcett, 2006) as

Specificity =
True negatives (TN)

False positives (FP) + True negatives(TN)

=
n11

n01 + n11

=
n11

n+1

For a binary classifier the positive predicted value or precision is an estimate of the probability

of correctly classifying the positive outcomes and is defined (Fawcett, 2006) as

Precision =
True positives (TP)

True positives (TP) + False positives (FP)

=
n00

n00 + n01
=

n00

n0+

There is an interchange between sensitivity and specificity: predicting all positive will give the

outcome of 100% sensitivity but 0% specificity and vice-versa. Specificity is inversely related

to the false positive rate since

1− Specificity = 1−
n11

n+1

=
n+1 − n11

n+1
=

(n01 + n11)− n11

n+1
=

n01

n+1

= fp rate

Accuracy can be determent from the specificity and sensitivity as follows

Accuracy = Sensitivity

(
n0+

n++

)
+ Specificity

(
n1+

n++

)

=
n00

n+0
×

n+0

n++
+

n11

n+1
×

n+1

n++

=
n00

n++

+
n11

n++

=
n00 + n11

n

In addition to the measures defined above a number of other measures that characterize the

performance of a classifier can be found in the literature (Altman and Bland, 1994; Kuhn, 2008;

9 2.5. Cross Validation

Zaki and Meira Jr, 2014), for example

F-measure =
2(

1

precision

)
+
(

1

sensitivity

)

Prevalence =
TP + FN

n

Positive Predicited Values =
sensitivity ∗ prevalence

sensitivity ∗ prevalence + (1− sensitivity) (1− prevalence)

Negative Predicted Values =
sensitivity ∗ (1− prevalence)

sensitivity (1− prevalence) + (specificity) (1− prevalence)

Detection rate =
TP

n

Detection prevalence =
(TP + FP)

n

Balanced accuracy =
sensitivity + specificity

2

All of these measures are available in the caret (Kuhn, 2014) package in R (R Core Team,

2014).

2.5 Cross Validation

Cross validation is a method of evaluating and comparing learning algorithms or classifiers by

dividing data set D into two sets, a training data set denoted by Dt and a validation data set

denoted by Dv (Gareth et al., 2013, page 176). The training data set, Dt, is used to train or

build the classifier, that is the training data is used to estimate the various model parameters.

The validation data set, Dv, is used to evaluate the model or classifier (Refaeilzadeh et al.,

2009). Each observation in the data set D has the same chance of being selected in either

of the training or validation data sets. It is assumed that the data are independent, that is

the training and validation data came from the same data set which has the same distribution

(Burman et al., 1994; Gelman and Wang, 2013). When the response variable, y, is quantitative

the regression model is evaluated using a score function, namely the mean square error (MSE)

or the adjusted R squared statistic (assuming there are multiple independent variables) (Gareth

et al., 2013). If the response variable, y, is qualitative or categorical the classification model

is evaluated using a score function which typically is an estimate of the misclassification error

(Gareth et al., 2013).

Consider a binary qualitative response variable, yi, where the two categories are denoted by

l = 0, 1 and a classifier, M , trained using the training data Dt. The model accuracy is estimated

using the validation data Dt, thus the accuracy rate or the misclassification rate are estimated

Chapter 2 Classification 10

as

Accuracyv = Average {IDv
(yi = l, ŷi = l, l ∈ {0, 1})}

=
1

nv

nv∑

i=1

I (yi = ŷi,xi ∈ Dv, nv = |Dv|)

= Av

Misclassificationv = Average {IDv
(yi = l, ŷi 6= l, l ∈ {0, 1})}

=
1

nv

nv∑

i=1

I (yi 6= ŷi,xi ∈ Dv, nv = |Dv|)

= MCv

where nv denotes the number of observations in the validation set, Dv.

The accuracy evaluated using the validation set has been denoted as Av and misclassification

error evaluated using the validation set as MCv. There are several different approaches to cross

validation, for example k-fold cross validation, hold out cross validation and leave one out cross

validation (LOOCV) as discussed in the following sections.

2.5.1 k-fold Cross Validation

Randomly partition the data set D into k approximately equal sized sets or folds. k − 1 folds,

that contain (k−1)n
k

observations of the data set D, are used as the training data to build the

model. The remaining fold, that contains n
k

observations, is used as the validation data set to

evaluate the model. This process is repeated k times, where for each iteration a different fold

is used as the validation set. The score function using k-fold cross validation is defined as

Accuracyk-fold CV = Average
k folds

{
Akj

v

}
=

1

k

k∑

j=1

Aj
v (2.5.1)

=
1

k

k∑

j=1

{
Averagei

{
IDjth validation set

(yi = ŷi)

}}

=
1

k

k∑

j=1

{
1

nj

nj∑

i=1

I (yi = ŷi,xi ∈ Dj , nj = |Dj |)

}

where Aj
v is the accuracy calculated using the jth validation set for the classifier trained using

training data D = D/Dj, that is

Aj
v =

1

nj

nj∑

i=1

I (yi = ŷi,xi ∈ Dj , nj = |Dj |)

11 2.5. Cross Validation

Misclassificationk-fold CV = Average
k folds

{
MCkj

v

}
=

1

k

k∑

j=1

MCj
v

=
1

k

k∑

j=1

{
Averagei

{
IDjth validation set

(yi 6= ŷi)

}}

=
1

k

k∑

j=1

{
1

nj

nj∑

i=1

I (yi = ŷi,xi ∈ Dj , nj 6= |Dj|)

}

where MCj
v is the misclassification error of the jth validation set, for the classifier trained using

training data D = D/Dj.

As an example consider performing 10-fold cross-validation. Start by randomly dividing the

data set D into 10 folds or sets of approximately equal size, denoted as D1, D2, ..., D10. Consider

this as a process with 10 iterations or steps. In iteration 1 train the classifier using training data

comprised as Dt = {D2, D3, D4, D5, D6, D7, D8, D9, D10}. Calculate the accuracy rate, A1
v, and

misclassification error rate, MC1
v , using the data in fold D1 as the validation data. In iteration 2

train the classifier using training data comprised as Dt = {D1, D3, D4, D5, D6, D7, D8, D9, D10}.

Calculate the accuracy rate, A2
v, and misclassification error rate, MC2

v , using the data in fold

D2 as the validation data. Continue the process, as shown in table 2.3 until iteration 10 is

completed. The accuracy and misclassification rates are then calculated as

Accuracy10-fold CV =
1

10

10∑

j=1

Aj
v

Misclassificationk-fold CV =
1

10

10∑

j=1

MCj
v .

Table 2.3: 10-fold cross validation (iteration process).

Iteration Training data: Dt Validation Data: Dv Accuracy Misclassification

1 Dt = {D2,D3,D4,D5,D6,D7,D8,D9,D10} D1 A1
v MC1

v

2 Dt = {D1,D3,D4,D5,D6,D7,D8,D9,D10} D2 A2
v MC2

v

3 Dt = {D1,D2,D4,D5,D6,D7,D8,D9,D10} D3 A3
v MC3

v
...

...

9 Dt = {D1,D2,D3,D4,D5,D6,D7,D8,D10} D9 A9
v MC9

v

10 Dt = {D1,D2,D3,D4,D5,D6,D7,D8,D9} D10 A10
v MC10

v

2.5.2 Hold-Out Cross Validation

Hold out cross validation is a variation of the k-fold cross validation method where k = 2

folds are used. The data set D is randomly divided into two parts, the training data Dt and

Chapter 2 Classification 12

the validation data Dv. A shown in table 2.4 the data set D is thus partitioned into two

approximately equal sized sets, denoted as D1 and D2. In iteration 1 the first fold, D1, is used

as the training data to build the classifier while the second fold, D2, is used to validate. The

process is repeated except the data sets are swapped, that is in iteration 2 the second fold, D2,

is used to train while the first fold, D1, is used to evaluate the model. The score function for

the data set D using hold-out cross validation is defined as Accuracyhold out = 1
2

∑2
j=1A

j
v

and Misclassificationhold out = 1
2

∑2
j=1MCj

v .

Table 2.4: Hold-out cross validation.

Training data set Dt =⇒ Model =⇒ Validation data set Dv =⇒ Accuracy & Misclassification

D1 =⇒ First =⇒ D2 =⇒ Result: A1

v
, M1

c

D2 =⇒ Second =⇒ D1 =⇒ Result: A2

v
, M2

c

2.5.3 Leave-One-Out Cross Validation

Leave one out cross validation (LOOCV) is a special case of k-fold cross where k = n, the

number of observations in the data set D. Partition the data set D into n equal folds D
n

=

D1, D2, D3, ..., Dn with one observation per fold. Each Di represents a row observation of (yi,xi)

where i = 1, 2, 3, ..., n . The training data set contains k − 1 folds or n− 1 observations which

are used to fit the model while the validation data set, which contains only one fold namely the

single observation Di, is used to evaluate the model.

As demonstrated in table 2.5, in iteration i the training data are Dt = {Dj where j 6= i} and

validation data are Dv = {Dj} = {xj}. The classifier is evaluated using this single observation

and hence

Aj
v = I (yj = ŷj,xi ∈ Dj) MCj

v = I (yj 6= ŷj,xi ∈ Dj)

The misclassification and accuracy estimate for leave one out cross validation is the average of

the n estimates, that is

AccuracyLOOCV =
1

n

n∑

j=1

Aj
v

=
1

n

n∑

j=1

I (yj = ŷj ,xj ∈ Dj)

therefore

13 2.5. Cross Validation

MisclassificationLOOCV =
1

n

n∑

j=1

MCj
v

=
1

n

n∑

j=1

I (yj 6= ŷj,xj ∈ Dj)

Table 2.5: Leave one out cross validation.

Iteration Training data: Dt Validation Data: Dv Accuracy Misclassification
1 Dt = {D2, D3, D4, ..., Dn−1, Dn} D1 A1

v MC1
v

2 Dt = {D1, D3, D4, ..., Dn−1, Dn} D2 A2
v MC2

v

3 Dt = {D1, D2, D4, ..., Dn−1, Dn} D3 A3
v MC3

v
...

...
...

n− 1 Dt = {D1, D2, D3, D4, ..., Dn} Dn−1 An−1
v MCn−1

v

n Dt = {D1, D2, D3, D4, ..., Dn−1} Dn An
v MCn

v

Chapter 2 Classification 14

Chapter 3

Classification Using the Naive Bayes and

Logistic Regression Classifiers

3.1 Introduction

This chapter provides an introduction to the Naive Bayes and logistic regression classifiers for

binary classification. Section 3.2 discusses the basic theory of Bayes rule and section 3.3 dis-

cusses the Naive Bayes classifier in detail. Section 3.4 discusses the logistic regression classifier,

including discussion on how to estimate the logistic regression model parameters.

3.2 Classifiers Based on Bayes Rule

The Bayes rule classifier uses Bayes theorem to predict the new class l, l = 0, 1 for the observed

x . It estimates the posterior probability P (Y = l | X =x) for each class l. Observations are

classified to the class that has the highest probability (Zaki and Meira Jr, 2014, page 467;

Gareth et al., 2013, page 38), thus the predicted class for observation x is given as

ŷ =
argmax

l {p(Y = l|X = x)} (3.2.1)

Bayes theorem can be derived from the basic probability concept by using the conditional

probability rule

p(X = x, Y = l) = p(Y = l | X = x)p(X = x)

= p(X = x | Y = l)p(Y = l) (3.2.2)

15

Chapter 3 Classification Using the Naive Bayes and Logistic Regression Classifiers16

equating both sides yields

p(Y = l | X = x)p(X = x) = p(X = x | Y = l)p(Y = l)

and thus

p(Y = l | X = x) =
p(X = x | Y = l)p(Y = l)

p(X = x)
(3.2.3)

p(X = x) is the probability of observing X = x from any class l, l = 0, 1 given as

p(X = x) = p((X = x, Y = 0) ∪ (X = x, Y = 1))

= p(X = x, Y = 0) + p(X = x, Y = 1)

From equation 3.2.2

p(X = x) = p(X = x | Y = 0)p(Y = 0) + p(X = x | Y = 1)p(Y = 1) (3.2.4)

Substituting equation 3.2.4 into the denominator of equation 3.2.3 yields Bayes theorem which

gives the posterior probability in term of the likelihood and the prior probability. p(Y = l |

X = x) is posterior probability of the observation in class l given the distribution of X = x,

p(X = x | Y = l) is the likelihood function of observing X assuming Y belongs to class l and

p(Y = l) is the prior probability of class l.

p(Y = l | X = x) =
p(X = x | Y = l)p(Y = l)

p(X = x | Y = 0)p(Y = 0) + p(X = x | Y = 1)p(Y = 1)

=
p(X = x | Y = l)p(Y = l)
1∑

l=0

p(X = x | Y = l)p(Y = l)

(3.2.5)

where p(x) is the marginal probability. Bayes rule in equation 3.2.1 can be rewritten as a

posterior probability

ŷ =
argmax

l {p(Y = l|X = x)}

=
argmax

l






p(X = x | Y = l)p(Y = l)
1∑

l=0

p(X = x | Y = l)p(Y = l)






=
argmax

l {p(X = x | Y = l)p(Y = l)}

17 3.2. Classifiers Based on Bayes Rule

since the p(X = x) =
1∑

l=0

p(X = x | Y = l)p(Y = l) is fixed for a particular x. Thus the

predicted class depends on the likelihood of the relevant class and prior probability of that

class as follows (Zaki and Meira Jr, 2014, page 468)

ŷ =
argmax
l ∈ {0, 1} {p(X = x | Y = l)p(Y = l)}

3.2.1 Estimating the Prior Probability

The likelihood, p(X = x | Y = l), and the prior class probabilities, p(Y = l), can be estimated

from the training data set D (Zaki and Meira Jr, 2014, page 468). Divide the training data

set D by the number of the classes l. Let Dl represent the subset of the training data set D

labeled as the class l, l = 0, 1, that is

D = {XǫRp which have class label Y = l , l = 0, 1}

D0 = {XǫRp which have class label Y = 0 }

D1 = {XǫRp which have class label Y = 1 }

The training data set has n observations and each subset Dl has nl observations. The prior

probability for class l can be estimated as

p(Y = l) =
nl

n
for l = 0, 1

3.2.2 Estimating the Likelihood

The likelihood function, p(X = x | Y = l) is estimated from the joint probability of all X = x

over p dimensions, that is seek

max {L (β)} = max {p(XǫRp | Y = l)}

If all the features or attributes are numeric either a parametric, for example using the multi-

variate normal distribution, or a non-parametric approach can be followed (Zaki and Meira Jr,

2014, page 468). If the features or attributes are categorical then a categorical approach, using

for example the multivariate Bernoulli distribution, can be utilised (Zaki and Meira Jr, 2014,

page 471). Often however there is not sufficient data to reliably estimate the joint probability

density or mass function, especially for high-dimensional data (Zaki and Meira Jr, 2014, page

473). An approach to over come this is to reduced the set of parameters, as described next

section.

Chapter 3 Classification Using the Naive Bayes and Logistic Regression Classifiers18

3.3 Naive Bayes Classifier

The Naive Bayes classifier is based on Bayes Rule. It assumes that the attributes, XǫRp, are

conditionally independent of the response, Y (Bishop, 2006; McCallum and Nigam, 1998; Lewis,

1998). The training dataset D consists of n observations of p variables, the binary response

variable denotes the class label, Y = l where l = 0, 1 . The Naive Bayes classifier uses Bayes

theorem directly to predict the class for a new test instance, given X = x. Applying the

independent assumption of the Naive Bayes classifier, the general property of probabilities and

the chain rule to equation 3.2.2 as follows:

p (X = x | Y = y) = p (XǫRp | Y = l)

= p (X1 = x1, X2 = x2, ..., Xp = xp | Y = l) (3.3.1)

= p (X1 = x1 | Y = l)× p (Xp−1 = xp−1, ..., Xp = xp | Y = l, X1 = x1)

= p (X1 = x1 | Y = l)× ...× p (Xp = xp | Y = l, X1 = x1, ..., Xp = xp)

= p (X1 = x1 | Y = l)× p (X2 = x2 | Y = l)× ...× p (Xp = xp | Y = l)

=

p∏

j=1

p (Xj = xj | Y = l) (3.3.2)

We derive Naive Bayes classifier from Bayes rules by applying the equation 3.3.2 into equation

3.2.5 as follows

p(Y = l | X = x) =

p(Y = l)

p∏

j=1

p (Xj = xj | Y = l)

1∑

l=0

p(Y = l)

p∏

j=1

p (Xj = xj | Y = l)

(3.3.3)

Equation 3.3.3 is the fundamental equation for the Naive Bayes classifier. Shown above is how

to calculate the probability that the response is of class l when the observed attributes have

values x. p (Y = l) and p (Xj = xj | Y = l) are estimated from the training data set. The Naive

Bayes classification rule is thus:

ŷ =
argmax
l ∈ {0, 1}






p(Y = l)

p∏

j=1

p (Xj = xj | Y = l)

1∑

l=0

p(Y = l)

p∏

j=1

p (Xj = xj | Y = l)






(3.3.4)

In practice we are only interested in the numerator of equation 3.3.4, since the denominator

does not depend on Y as the values of the features X are given and hence the denominator is

effectively constant (Han et al., 2012, page 352). The Naive Bayes classifier is thus defined as

19 3.3. Naive Bayes Classifier

follows

ŷ =
argmax
l ∈ {0, 1}

{
p(Y = l)

p∏

j=1

p (Xj = xj | Y = l)

}

3.3.1 Estimating the Maximum Likelihood for Naive Bayes Classifier

We seek the maximum likelihood estimates for the Naive Bayes classifier, that is we seek

estimates to maximize

L (β) = p(Y = l)

p∏

j=1

p (Xj = xj | Y = l) (3.3.5)

From equation 3.2.2 we can rewrite equation 3.3.5 as follows

log {L (β)} = log

{
p (Y = l)

p∏

j=1

p (XǫRp|Y = l)

}

l (β) = log {p (Y = l)}+ log

{
p∏

j=1

p (XǫRp | Y = l)

}

= log {p (Y = l)}+

p∑

j=1

log {p (XǫRp | Y = l)}

For the maximum likelihood estimation we seek the parameter values that maximize l (β). This

leads to the following points:

• p (Y = l) ≥ 0 for all l = 0, 1;

• For all Y and X, p (X = x | Y = l) ≥ 0;

• For all j = 1, 2, .., p and l = 0, 1 and
∑

j,l

p (X = x | Y = l) = 1.

We utilize Lagrange multipliers to estimate the parameters p (Y = l) and p (XǫRp | Y = l) from

the training data set D:

p (Y = l) =

n∑

i=1

(Yi = l)

n
=

count (Yi)

n

where i = 1, 2, ..., n and l = 0, 1.

n∑

i

(Yi = l) = count (Yi) is simply the number of times that

the label Yi = l is seen in the training data set.

Chapter 3 Classification Using the Naive Bayes and Logistic Regression Classifiers20

Similarly, the maximum likelihood estimates for the p (X = x | Y = l) parameters for all l =

0, 1, for all i = 1, 2, ..., n and for all j = 1, 2, ..., p take the following form

p (X = x | Y = l) =

n∑

i=1

(Yi = l, Xij = xij)

n∑

i=1

(Yi = l)

=
count

i
(XǫRp, Y = l)

count (Yi = l)

where count
i

(Y = l, X = x) =

n∑

i=1

(Yi = l, Xij = xij) we simply count the number of times label

Y = l is seen in conjunction with xj taking value x; count the number of times the label Y = l

is seen in total; then take the ratio of these two terms.

It must be noted that the parameter estimation or learning described above is fairly general.

The only special requirement is the Naive Bayes assumption which assumes conditional inde-

pendence of features. This makes it a Naive Bayes classifier (Zhu, 2010).

3.4 Logistic Regression

Binary logistic regression is an approach to learning the function of the posterior probability

p(Y = l | X = x) . The aim is to determine the target variable y which is binary, yǫ(0, 1). The

target variable is influenced by the associated predictor variables x, x = [x1, ..., xp]
′ ǫRp. The

predictor variables can be quantitative or qualitative (nominal or ordinal). Logistic regression

models can be used to predict the probability that y belongs to a particular class (Hastie et al.,

2009, page 95).

3.4.1 The Logistic Regression Model

Logistic regression is the logit or the natural logarithm of the odds ratio (Peng and So, 2002).

It models the relationship between the target variable y denote by p(Y = l | X = x), as a linear

function of predictor random variables denoted by g(x)

g(x) = β′x

= β0 + β1x1 + β2x2 + ... + βpxp

where β(p+1)×1 is a vector of the unknown parameters β = [β0, β1, β2, . . . , βp]
′ and x(p+1)×1

is a vector of the predictor variables, x = [1, x1, x2, . . . , xp]
′. Logistic regression models the

21 3.4. Logistic Regression

relationship between the probability of an observation being in class l and the linear function

of g(x). The probability that y is in the class 1 given the data, denoted by π1, is modeled as

π1 = p(Y = 1 | g(x))

=
exp(g(x))

1 + exp(g(x))
(3.4.1)

=
1

exp(−g(x))(1 + exp(g(x)))

=
1

exp(−g(x)) exp(g(x)) + exp(−g(x))

=
1

1 + exp(−g(x))

The sum of the total probability is equal to one, since there are two class

p(Y = 1 | g(x)) + p(Y = 0 | g(x)) = 1

Therefore

π0 = p(Y = 0 | g(x)) = 1− p(Y = 1 | g(x)

= 1−
exp(g(x))

1 + exp(g(x))
=

1 + exp(g(x))− exp(g(x))

1 + exp(g(x))

=
1

1 + exp(g(x))

From equation 3.4.1 denote π = p(Y = 1|X =x) as the probability of observing y in class 1

given the data x. The logistic regression function of π can be expressed as

π =
exp(g(x))

1 + exp(g(x))
(3.4.2)

The odds ratio is defined as the ratio of the probability of success and the probability of failure.

Given π as the probability of success, the odds ratio is defined as odds = π
1−π

. The odds ratio

is a non-negative function, that is the odds ≥ 0, as shown in figure 3.4.1a.

Chapter 3 Classification Using the Naive Bayes and Logistic Regression Classifiers22

(a) Relationship between odds and probability. (b) Relationship between logit and probability.

Figure 3.4.1: Odds, logit and probability

By rearranging the logistic regression function of equation 3.4.2 it can be seen that the odds

ratio is an exponential function of g(x) since

π =
exp(g(x))

1 + exp(g(x))

π(1 + exp(g(x))) = exp(g(x))

π + π exp(g(x)) = exp(g(x))

π = exp(g(x))− π exp(g(x)

π = exp(g(x))(1− π)
π

1− π
= exp(g(x)) = exp(β′x) (3.4.3)

The logit of π is observed by taking the logarithm of both sides of the odds ratio of equation

3.4.3. The logistic regression model predicts the logit of π. π is the predicted probability that

Y = 1, from x. The logit of the probability of success, π, is a linear function of the predictor

variables x and unknown parameters β. As shown in figure 3.4.1b, if the probability of success

π = 1
2

then the logit of π is equal to zero. If the probability of success is greater than 1
2

then

the logit of π is positive. A probability of success less than 1
2

corresponds to the negative result

of logit of π.

In summary the logistic regression model can be formulated as:

logit(π) = ln
(

π
1−π

)

= g(x)

= β′x

= β0 + β1x1 + β2x2 + ...+ βpxp

23 3.4. Logistic Regression

3.4.2 Estimation of the Logistic Regression Model Parameters

The response variable y is binary such that each Y belongs to one of the two classes 0 or 1

with fixed probability of being in each class π1 or π0 = (1− π1). The probability distribution

function of p(Y = l|X =x) is the probability of observing Y belongs to class l ∈ {0, 1} given

X, has a Bernoulli distribution with probability of success is π

p(Y = l|X = x) =

{
πyi
i (1− πi)

1−yi for yi = 0, 1

0 otherwise

where E(Yi | x) = µi = πi and V ar(Yi | x) = σ2
i = π(1− πi).

Logistic regression models the number of observation in each class based on the sample obser-

vations. Consider taking a random sample of size ni. Let mi denote the number of successes,

thus mi is the sum of yi, mi > 0. There are ni independent Bernoulli random variables with

fixed probability of success π and failure (1−π). mi has a Binomial distribution with parameter

π, sample size ni, mi ∼ binomial(ni, π):

p(Mi = mi|X =xj) =
(
ni

mi

)
πmi(1− π)ni−mi

Note that E(Mi | x) = µi = niπ and V ar(Mi | x) = σ2
i = niπ(1 − π). The likelihood is given

by

L (π,β) =
n∏

i=1

(
ni

mi

)
πmi(1− π)ni−mi

Since log is an increasing function, the maximum log likelihood is the same as the maximum

likelihood. The log converts the product into a sum, that is

ln {L (π,β)} =
n∑

i

(
mi ln πi + (ni −mi) ln(1− π) + ln

(
ni

mi

))
(3.4.4)

where ln
(
ni
mi

)
is a constant, independent of the unknown parameters and hence it can be ignored

when the derivatives are taken with respect to the unknown parameters.

Chapter 3 Classification Using the Naive Bayes and Logistic Regression Classifiers24

Substituting equation 3.4.2 into equation 3.4.4 yields

ln {L (π,β)} = ln

{
n∏

i

(
ni

mi

)
πmi(1− π)ni−mi

}

l (π,β) =

n∑

i=1

{
ln (πmi) + ln (1− π)ni−mi + ln

(
ni
mi

)}

=
∑

i

{
mi ln π + (ni −mi) ln(1− π) + ln

(
ni

mi

)}

=
∑

i

{
mi ln π −mi ln(1− π) + n ln(1− π) + ln

(
ni

mi

)}

=
∑

i

{
mi (ln π − ln(1− πi)) + n ln(1− π) + ln

(
ni

mi

)}

=

n∑

i=1

{
mi ln

(
π

1− π

)
+ n ln(1− π) + ln

(
ni
mi

)}

where we assume that

ln

(
π

1− π

)
= g(xi) = β′xi = β0 + β1x1i + β2x2i + ...+ βpxpi

and hence

l (π,β) =

n∑

i=1

(
miβ

′xi + n (1 + exp(β′xi))
−1

+ ln
(
ni

mi

))

∴ l (β) =
n∑

i=1

(
miβ

′xi − n (1 + exp(β′xi)) + ln
(
ni

mi

))

To find the maximum likelihood, L(β) , differentiate the log likelihood with respect to the

unknown parameters β and set the derivatives equal to zero. The resulting equations are

known as the score equations, that is for j = 0, . . . , p

l′(βj) =
∂ ln {L(β)}

∂βj

=
n∑

i=1

(
mixij −

nixij exp(β
′xi)

1 + exp(β′xi)

)

=
∑

i

(
xij(mi −

ni exp(β
′xi)

1 + exp(β′xi)
)

)

=
∑

i

xij (mi − nip (y = 1 | X = xi)) = 0

where µi = nip(Y = 1 | X =xi) = niπ, xi is the vector of (p + 1) of the predictor variables.

25 3.4. Logistic Regression

Thus the j equations can be expressed as

l′(βj) =

n∑

i

xi(mi − niπ) for j = 0, 1, ..., p

It is convenient to express these in matrix form, that is as

l′(β) =
∂l (β)

∂β
= X(m− µ) (3.4.5)

where

X (m− µ) =




x10 · · · x1p

x20 · · · x2p

...
. . . · · ·

xn0 · · · xnp




′ 





m1

m2

...

mn



−




µ1

µ2

...

µn







=




n∑

i=1

xi0 (mi − µi)

n∑

i=1

xi1 (mi − µi)

...
n∑

i=1

xip (mi − µi)




When setting these p + 1 nonlinear equations of the p + 1 parameters equal to zero there is

no closed form solution. The nonlinear equation can be solved using the Newton Raphson

algorithm, which requires the second derivatives, called the Hessian matrix

3.4.2.1 The Newton Raphson Method

The Newton Raphson method can be used to find solution for the nonlinear score equations

[Hastie et al., 2009, page 99; Izenman, 2009, page 243] as follows

l′(βj) =
n∑

i

xi(mi − niπi) = 0 for j = 0, 1, ..., p

Chapter 3 Classification Using the Naive Bayes and Logistic Regression Classifiers26

There are p+ 1 equations since j = 0, 1, ..., p, that is

l′(β0) =

n∑

i

xi0(mi − niπi) = 0

l′(β1) =

n∑

i

xi1(mi − niπi) = 0

... =
...

l′(βp) =
n∑

i

xip(mi − niπi) = 0

These score equations are typically denoted as a vector

l′(β) =




∂ ln{L(β)}
∂β0

∂ ln{L(β)}
∂β1

...
∂ ln{L(β)}

∂βp



=




n∑

i

xi0(mi − niπi)

n∑

i

xi1(mi − niπi)

...
n∑

i

xip(mi − niπi)




= X(m− µ)

where X, m and µ are defined above.

The partial derivatives of the components of l′(β) are

l′′(βj) =
∂′′ ln {L(β)}

∂βiβj

= −

n∑

i

ni

xij(xij exp(β
′x)(1 + exp(β′x))− xij exp(β

′x)exp(β′′x))

(1 + exp(β′X))2

= −
n∑

i

nix
′
ij(

(exp(β′x) + exp(2β′x))− exp(2β′x)

(1 + exp(β′x))2
)xij

= −

n∑

i

nix
′
ij(

exp(β′x)

(1 + exp(β′x))
)xij

= −

n∑

i

nix
′
ij(

exp(β′x)

(1 + exp(β′x))(1 + exp(β′x))
)xij

= −
n∑

i

nix
′
ijπi(1− πi)xij

l′′(βj) = −

n∑

i

x′
ijΣixij

The components of the covariance matrix are Σi = δ2 = niπ(1 − πi) and hence the Hessian

27 3.4. Logistic Regression

matrix is given by

l′′(β) =

[
∂′′ ln {L(β)}

∂βiβj

]

ij

for i, , j = 0, 1, 2, ..., p

=




∂′′ ln{L(β)}
∂β′′

0

∂′′ ln{L(β)}
∂β′

0
β′

1

· · · ∂′′ ln{L(β)}
∂β′

0
β′

p

∂′′ ln{L(β)}
∂β′

1
β′

0

∂′′ ln{L(β)}
∂β′′

1

· · · ∂′′ ln{L(β)}
∂β′

1
β′

p

...
...

. . .
...

∂′′ ln{L(β)}
∂β′

pβ
′

0

∂′′ ln{L(β)}
∂β′

pβ
′

1

· · · ∂′′ ln{L(β)}
∂β′′

p




=




−
n∑

i

x′
i0Σxi0 −

n∑

i

x′
i0Σxi1 · · · −

n∑

i

x′
i0Σxip

−

n∑

i

x′
i0Σxi1 −

n∑

i

x′
i1Σxi1 · · · −

n∑

i

x′
i1Σxip

...
...

...

−

n∑

i

x′
i0Σxip −

n∑

i

x′
i1Σxip · · · −

n∑

i

x′
ipΣxip




= −




n∑

i

x′
i0Σxi0

n∑

i

x′
i0Σxi1 · · ·

n∑

i

x′
i0Σxip

n∑

i

x′
i0Σxi1

n∑

i

x′
i1Σxi1 · · ·

n∑

i

x′
i1Σxip

...
...

...
n∑

i

x′
i0Σxip

n∑

i

x′
i1Σxip · · ·

n∑

i

x′
ipΣxip




= −X′ΣX (3.4.6)

The Newton’s Raphson iterative approach to finding maximum likelihood ML estimates is a

building block for the iteratively re-weighted least squares (IRLS) algorithm.

By beginning with β(0) = 0 the (j)st step gets substituted by the (j + 1)th step until the learning

rate, L′(β
L′′(β)

is equal or close to zero.

= β̂
(j)

+
L′(β)

[L′′(β)]

= β̂
(j)

+ [L′′(β)]
−1

L′(β) (3.4.7)

Keep updating equation 3.4.7 until there is a small change between the components from one

iteration to the next.

By referring to equations ?? and 3.4.6 the estimated parameter of ML by Newton’s method in

Chapter 3 Classification Using the Naive Bayes and Logistic Regression Classifiers28

matrix notation can written as

β̂
(j+1)

= β̂
(j)

+ [x′Σx]
−1

X(m− µ)

= [x′Σx]
−1

xΣxβ̂
(j)

+ [x′Σx]
−1

xΣΣ−1(m− µ)

= [x′Σx]
−1

xΣ

{
xβ̂

(j)
+Σ−1(m− µ)

}

= [x′Σx]
−1

xΣz (3.4.8)

where

z =
{
xβ̂

(j)
+Σ−1 (m− µ)

}

the ith is component of z is

zi = x′
iβ̂

(j)
+

yi − µi

πi (1− πi)

The update equation, equation 3.4.8, is written in the generalized least squares estimator form

with

• Σ as the diagonal matrix consisting of weights;

• z a target vector;

• X matrix data;

• β̂ is the update parameter;

• µi = niπi mean of the predictor;

• π is a probability of success.

β̂,z and Σ are updated at every step since they are dependent on β(j). Equation 3.4.8 depends

on the assumption that x′Σx is invertible. This is acceptable when n > p + 1. The IRLS

algorithm converges in almost all pragmatic situations (Hastie et al., 2009)

3.4.3 Using Logistic Regression as a Classifier

There are two different ways to assign observation x to a class. Both methods depend on the

maximum likelihood estimates. The maximum likelihood estimates the parameters β to give

estimates of the logistic function as

ĝ(x) = β̂′x (3.4.9)

= β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂pxp

29 3.4. Logistic Regression

If ĝ(x) ≥ 0 assign xi to class 1, l = 1, otherwise xi belongs to class 0, l = 0. This is typically

refereed to as logistic analysis An equivalent classification procedure is to use the likelihood

estimated of ĝ(x) in the equation 3.4.9 to estimate the posterior probability P (Y = l | X = x)

as follows

p̂ (y = 1 | X = x) =
exp(ĝ(x))

1 + exp(ĝ(x))

=
1

1 + exp(−ĝ(x))

=
1

1 + exp(−β̂′x)

x is assigned to class one, l = 1 if the posterior probability P̂ (Y = 1 | X = x) ≥ c. Where c is

some cutoff value. alternatively x is assigned to the class zero, l = 0 (Izenman, 2009).

Chapter 3 Classification Using the Naive Bayes and Logistic Regression Classifiers30

Chapter 4

Classification Trees

4.1 Introduction

This chapter gives an introduction to classification trees. Section 4.2 gives a basic theory of

the binary classification tree. Section 4.3 discusses the impurity function. It also states an

important theorem of node impurity and tree impurity. Section 4.4 discusses the splitting rule

for decision trees using the Gini index and Entropy index. It also discusses how to prune the

maximum tree using cost complexity pruning and cross validation methods.

4.2 Binary Classification Trees

A classification tree is also known as a decision tree (Ross. J, 1986). A classification tree is

built through a process of either splitting or not splitting each parent node in the classification

tree into two internal nodes. At each node the tree algorithm searches through all the variables

one by one to obtain the best split. The starting point for splitting is denoted by a root node t

at the top of the tree, see figure 4.2.1 below . The split is decided by a condition c for a single

variable x, x ≤ c (Breiman et al., 1984) as shown in table 4.1.

Split
Class of Y

Row Total
0 1

xj ≥ c n11 n12 n1+

xj ≤ c n21 n22 n2+

Column Total n+1 n+2 n++

Table 4.1: Classification table: The binary split of Y for variable xj .

31

Chapter 4 Classification Trees 32

Figure 4.2.1: A figure depicting the root node, non-terminal and terminal nodes of a classifica-
tion tree.

As shown in figure 4.2.1 nodes are either root, terminal or non-terminal nodes. A non-terminal

node is also called a parent or internal node and these nodes have at least one child node. A

binary split is decided by a condition value c, a single variable x as follows: if x ≤ c then split

to tL assigned to the right son node, otherwise tR assigned to the left son node. The process

continues until all the variables in data set X are split. A node that does not split, that is a

node that has no child, is called terminal node or a leaf node or external node. All observations

in a terminal node are assigned to one class and hence a terminal node is assigned a class labels.

Each tree has more than one terminal node (Breiman et al., 1984).

4.3 Impurity Functions

An impurity function is a function Φ defined on the set of all L- tuples of numbers (p1, ..., pL),

where pl is a non-negative function satisfying pl > 0, where

L∑

l=0

pl = 1 with the following

properties (Breiman et al., 1984, page 24):

1. Φ is maximum when all the classes have equal probability, Φ
(
1
L
, 1
L
, . . . , 1

L

)
;

2. Φ is minimum when the probability of one class is one and the remaining classes are zero,

Φ (1, 0, 0, ..., 0) ,Φ (0, 1, 0, ..., 0) , ...,Φ (0, 0, 0, ..., 1) the nodes contain only one class;

3. Φ is symmetric function of p0, p1, ..., pl gives small tree and under fitted and loose gives

over fit decision tree; if the permutation of Φ remain the same then Φ (p0, p1, p2, ..., pl) =

Φ (p̄0, p̄1, p̄2, ..., p̄l).

4.3.1 Node Impurity

Given an impurity function Φ, define the impurity of node t as

33 4.3. Impurity Functions

i (t) = Φ (p (0 | t) , p (1 | t) , p (2 | t) , ..., p (l | t))

The node impurity function is a maximum when the probability of split s is equal to pl =
1
L
,

a minimum when the probability of split s is equal to pl = 0 or 1. pl = 0 the node contains

only one class [Raileanu and Stoffel, 2004; Breiman et al., 1984, page 25]. The node impurity

function is calculated at each step of splitting the observations in the node into two subset

nodes L,R with associated probability

pL =
n1+

n++
(4.3.1)

and

pR =
n2+

n++

(4.3.2)

The goodness of split s at a node t, denoted by Φ(s, t), is defined as

△i(s, t) = Φ(s, t) = i(t)− pLi(L)− pRi(R)

The best split s of the node t is the split with largest △i(s, t) or equivalently with the smallest

value of pLi(L) + pRi(R) (Ripley, 1996; Breiman et al., 1984, page 32)

△i(
⋆
s, t) = max

sǫQt

△i(s, t)

The best split at each node maximizes the decrease in impurity between the nodes △i(
⋆
s, t),

which partitions the data into the left and right child or son nodes.

4.3.2 Tree Impurity

The impurity of the tree T , denoted by I (T), is calculated across the terminal nodes in the

tree. The tree impurity is calculated as

I (T) =
∑

tǫT ′

I (t)

=
∑

tǫT ′

p (t) i (t)

where T ′ denotes the set of terminal nodes of tree T0.

The tree impurity is a maximum only if the goodness of the split △i(s, t) is maximum (Breiman

et al., 1984). At any node t of the sub-tree T̃ using the split s, splits the node into tR and tL.

The new sub-tree T ′ has impurity function

Chapter 4 Classification Trees 34

I
(
T̃
)
=

∑

tǫT̃

I (t) + I (tR) + I (tL)

where T̃ ′ denotes the set of terminal nodes of sub-tree T̃ .

The decrease in tree impurity is calculated by subtracting the impurity of sub-tree T̃ from the

impurity of tree T

I (T)− I (T ′) = I (t) + I (tR) + I (tL)

The goodness of split based on the tree impurity is △I (s, t) = I (t) + I (tR) + I (tL) where

△I (s, t) = I (t) + I (tR) + I (tL)

= i (t) p (t)− i (tR) p (t)− i (tL) p (t)

= (i (t)− i (tR)− i (tL)) p (t)

= (i (t)− pRi (tR)− pLp (tL)) p (t)

= △i (s, t) p (t)

The goodness of split tree impurity △I (s, t) is equal to the node impurity △i (s, t) multiplied

by the estimate of the probability of node t, p (t). The same maximum split point,
⋆
s , will

be chosen in either impurity function (Breiman et al., 1984, page 33). A tree is grown by

contractually minimizing the split impurity, and hence the tree impurity, until the stopping

criterion is satisfied.

4.4 Splitting Rules

There are many criteria which can be defined for selecting the best split at each node. In the

context of classification the goal is to minimize the impurity. As result we select the split that

will reduce the node impurity (Breiman et al., 1984, 37). Two common node impurity functions

are the Gini index and the Entropy index functions.

4.4.1 Gini Index

The Gini coefficient is a measure of statistical dispersion (Sheen and Anitha, 2012). The Gini

index at node t is defined as

G (t) = i (t) = Φ (p (0 | t) , p (1 | t) , ..., p (L | t))

=
L∑

l 6=j

p (l | t) p (j | t)

35 4.4. Splitting Rules

Note that for binary splits where L = 0, 1

G (t) =
∑

l 6=j

p (l | t) p (j | t)

=

1∑

l=0

p (l | t) (1− p (l | t))

=
1∑

l=0

p (l | t)−
L∑

l

(p (l | t))2

= 1−
1∑

l=0

(p (l | t))2

According to [Breiman et al., 1984; Therneau et al., 1997, page 103] there are two interpre-

tations of the Gini index. In binary classification there are two classes: L = 0, 1. The Gini

index is measure or sum of the variance across the classes. The Gini index uses the probability

0 ≤ pl ≤ 1. If the probability is close to zero or one the Gini index gives smaller value. Small

values mean that the observations in the node are from one class. The Gini index for binary

variables is

G(t) = i (t) = 1− p (0 | t)2 − p (1 | t)2

= 1−
[
(1− p (0 | t))2 + p (0 | t)2

]

= 1−
[
1− 2p (0 | t) + p (0 | t)2 + p (0 | t)2

]

= 1−
[
1− 2p (0 | t) + 2p (0 | t)2

]

= 1− 1 + 2p (0 | t)− 2p (0 | t)2

= 2p (0 | t)− 2p (0 | t)2

= 2p (0 | t) [1− p (0 | t)]

= 2p (0 | t) p (1 | t)

Using the values in table 4.1, the Gini index of node t is calculated as

G (t) = 2

(
n+1

n++

)(
1−

n+1

n++

)

The Gini index for splitting the node t into two child nodes is given by

GSplit (t) = pLG(tL) + pRG(tR)

where pL is the proportion of cases in the node t sent to the left child node and pR is the

proportion sent to the right child node. The best split is the split that has the smallest value of

GSplit (t). The variable that gives the best split is applied (Muchai and Odongo, 2014). The

Chapter 4 Classification Trees 36

goodness of split for node t and split s is defined as

△i(s, t) = Φ(s, t) = G(t)− pLG(tL)− pRG(tR)

= G(t)−GSplit (t)

The split with maximum △i(s, t) is equivalent to the split with minimum GSplit (t) (Breiman

et al., 1984, page 103). The idea of the CART method (Breiman et al., 1984) is to determine

the goodness of split △i(s, t) at each split s, sǫQt, where Qt is the set of all possible splits at

node t and then to select the best split
⋆
s given as

△i(
⋆
s, t) = max

⋆
sǫQt

(G(t)− pLG(tL)− pRG(tR))

= max
⋆
sǫQt

△i(s, t)

Example 3.1: Consider the binary split of the node t1 as shown in figure 4.4.1.

Figure 4.4.1: Binary split the node t1.

The Gini index index G (t1) used for splitting the root node t1 and the goodness of split △i(s, t)

are calculated below.

The probability of p (0 | t1) =
800
1 600

and the probability of p (1 | t1) =
800

1 600
and hence

G (t1) = 2

(
800

1 600

)(
800

1 600

)
=

1

2

the Gini index for the nodes t2 and t3 are calculated as

G (t2) = 2

(
600

900

)(
300

900

)
= 0.44444

G (t3) = 2

(
200

700

)(
500

700

)
= 0.40816

37 4.4. Splitting Rules

The probability of splitting node t1 into t2 and t3 is thus

pt2 =
900

1 600
= 0.5625

pt3 =
700

1 600
= 0.4375

The Gini split of node t1 is

GSplit (t1) = pt2G(t2) + pt3G(t3)

= 0.5625× 0.44444 + 0.4375× 0.40816

= 0.42857

The goodness of split for Gini index at the node t1 is this

△Ginii(s, t) = G(t1)−GSplit (t1)

= 0.5− 0.42857

= 0.07143

Example 3.2: Consider the example of binary tree shown in figure 4.4.2.

Figure 4.4.2: An example of a binary tree.

For each non-terminal node in the tree the Gini index and split △i(s, t) calculates are obtained

shown in table 4.2

Chapter 4 Classification Trees 38

Table 4.2: The Gini split and goodness of the split in the non-terminal nodes in the tree depicted
in figure 4.4.2.

Node ti Class 0 Class 1 Gini index Gini split GSplit (ti) Goodness of split △i(s, ti)

1 800 800 0.5 0.42857 0.07143
2 600 300 0.44444 0.44326 0.00119
3 200 500 0.40816 0.35744 0.05073
4 451 211 0.43428 0.42743 0.00685
6 128 462 0.33976 0.33178 0.00799

4.4.2 Entropy Index

The Entropy function is defined as (Breiman et al., 1984)

i(t) = Φ(p(0 | t), p(1 | t), ..., p (L | t))

= −

L∑

l=0

p(l | τ) log p(l | τ)

Note that for binary splits where L = 0, 1

i (t) = −p(0 | t) log p(0 | t)− p(1 | t) log p(1 | t)

Using the values in table 4.1. The entropy index of a node is calculated as

Entropy(t) = i (t) = −(
n1+

n++
)l log(

n1+

n++
)− (

n2+

n++
) log(

n2+

n++
)

The goodness of a split based on the entropy measure is given by

△i(s, t) = Φ(s, t) = Entropy(t)− pLEntropy(tL)− pREntropy(tR)

Both the entropy and Gini indices have been used widely in the CART methodology, see for

example Breiman et al. (1984); Strobl et al. (2007).

Example 3.3: Refer to figure 4.4.1. The Entropy index, Entropy(t) used for splitting the root

node t1 is calculated with the goodness of split △Entropyi(s, t) . The probability of p (0 | t1) =
800

1 600
and the probability of p (1 | t1) =

800
1 600

Entropy (t1) = −

(
800

1 600

)
log

(
800

1 600

)
−

(
800

1 600

)
log

(
800

1 600

)

= 0.30103

39 4.5. Splitting Procedure

The Entropy index for the nodes t2 and t3 are thus

Entropy (t2) = −

(
600

900

)
log

(
600

900

)
−

(
300

900

)
log

(
300

900

)

= 0.27643

Entropy (t3) = −

(
500

700

)
log

(
500

700

)
−

(
200

700

)
log

(
200

700

)

= 0.25983

The probability of splitting a node t1 into t2 and t3 is thus

pt2 =
900

1 600
= 0.5625

pt3 =
700

1 600
= 0.4375

The Entropy split of the node t1 is thus

EntropySplit (t1) = 0.5625× 0.27643 + 0.4375× 0.25983

= 0.26917

The goodness of this split, based on the entropy measure, at node t, is

△Entropyi(s, t) = 0.301029996− 0.269167974

= 0.03186

Table 4.3: The Entropy split and goodness of the split in the non-terminal nodes in the tree
depicted in figure 4.4.2.

Node ti Class 0 Class 1 Entropy index Entropy split GSplit (ti) Goodness of split △i(s, ti)

1 800 800 0.5 0.26917 0.03186
2 600 300 0.44444 0.27286 0.00057
3 200 500 0.40816 0.23544 0.02438
4 451 211 0.43428 0.26850 0.00333
6 128 462 0.33976 0.22236 0.00478

4.5 Splitting Procedure

The following procedure is used to select the splitting variable and the splitting value at the

node t (Breiman et al., 1984):

1. Determine the Gini split at node t among the child branches over all possible decision

points for each variable Xj at each node;

Chapter 4 Classification Trees 40

2. Select the variable and the critical value, c, of that variable with the smallest Gini split

at node t, denoted byxjc and use it for splitting;

3. Repeat this process at each node until each node has at least one observation or meets

the minimum requirement of the observations at each node.

The procedure is the same for other choices of impurity function, for example the entropy

impurity function.

4.5.1 Maximum Tree

The maximum tree is denoted by Tmax = T0. This tree is the result of splitting the root node

into several sub-nodes depending on the data set D and the impurity function. Splitting of

nodes (internal nodes) carries on until all terminal nodes that are generated have at least one

observation or all the observation belong to the same class or we declare the node to be a

terminal node if satisfies the following condition

max△R (s, t) ≤ cR (t)

where c is a constant between 0 ≤ c ≤ 1 and R (t) is the misclassification rate of node t. The

result of Tmax is decreasing sequence of sub-trees where T0 is the full tree and T∞ is the tree

without any splitting or terminal nodes:

T0 ≥ T1 ≥ T2 ≥, ...,≥ T∞

To select the right size of tree from the sequence T0 ≥ T1 ≥ T2 ≥, ...,≥ T∞, we need to estimate

the misclassification error rate R (T) (Breiman et al., 1984, page 233). The maximum tree can

have two problems (Breiman et al., 1984, page 61)

1. High accuracy with low misclassification error rate. This tree provides poor outcomes

when applied to new sample data.

2. Understanding and interpreting the maximum tree with large numbers of terminal nodes

is complicated.

The maximum tree is a complex tree. The complexity of a trees is determined by the number

of terminal nodes (Yohannes and Webb, 1999). Pruning the maximum tree yield the right size

tree with the best accuracy and misclassification rate.

41 4.6. Pruning a Tree

4.6 Pruning a Tree

The goal of pruning is to remove parts of a classification model that describe random variation

in the data set rather than true structure features of the underlying domain Mahmood et al.

(2010). There are two types of pruning namely, pre and post pruning.

• For the pre-pruning method we stop splitting the tree according to some stopping criteria.

Tightly criteria generate small tree are typically underfit (Mahmood et al., 2010);

• The standard algorithm for post-pruning decision trees does not take statistical signifi-

cance into account. The method is known to be one of the fastest pruning algorithms that

produces trees that are both accurate and small (Esposito et al., 1997). Post pruning a

tree has two main steps: fitting and simplification. Fitting or growing the maximum sized

tree may result in the possibility of over fitting after a certain point. Reducing the size

of the tree is accomplished by pruning the tree back, starting from the terminal nodes

utilizing a score function (Mahmood et al., 2010).

4.6.1 Cost Complexity Pruning

The minimal cost complexity pruning algorithm is defined by (Breiman et al., 1984). The

CART technique growing and pruning the tree is based on balancing or optimizing the com-

plexity and misclassification error rates of the tree. Continuous splitting increases the size of

the tree the node misclassification error rates decreases as the tree size increases until the mis-

classification error becomes zero. The main objective is to find the best proportion between the

tree complexity and misclassification error R (T) [Timofeev, 2004; Breiman et al. 1984, page

66]. The best proportion is found through use of the cost-complexity function, denoted as

Rα (T) = R (T) + α | T̃ | (4.6.1)

where | T̃ | is the number of terminal nodes in the tree T . α | T̃ | is a measure of the complexity

of the tree. α is a parameter found through the sequence of training data used to build the

tree. The other part of the data is taken as testing data used to evaluate the tree.

α =
R (t)−R (Tt)

| T̃t | −1
(4.6.2)

We denote R (t) as the error associated with the node t, R (Tt) is equal to the sum of errors

associated with all terminal nodes that are off spring of t, and | T̃ | is number of the terminal

nodes associated with node t. The sequence of α can be determined from equation 4.6.2. The

minimal error rate cost complexity pruning is the same as the minimal cost complexity pruning

in classification is defined as

Chapter 4 Classification Trees 42

Rα (T (α)) = min
T≤Tmax

Rα (T)

Example 3.4: The maximum tree was fitted using simulated data that contains 1 600 observa-

tions where 800 observations belong to class one and the remaining observations to class zero.

the maximum tree has four non-terminal nodes and six terminal nodes as shown in figure 4.6.1.

Figure 4.6.1: The maximum tree, T0.

Pruning the maximum tree using the alpha method

α =
R (tt)−R (Tt)(

| T̃t | −1
)

yields

α (T0(t1)) =
0.5− 0.9541

6− 1
= −0.0908

α (T0(t2)) =
0.25− 0.5512

3− 1
= −0.1506

α (T0(t3)) =
0.1786− 0.4028

3− 1
= −0.1121

α (T0(t4)) =
0.3194− 0.4274

2− 1
= −0.1080

α (T0(t6)) =
0.2864− 0.3318

2− 1
= −0.0454

Node t
2

has the lowest alpha of −0.1506. As a result we prune the tree under node t2, that is

change the non terminal node t2 to a terminal node. The first pruning results in sub-tree T1

which is smaller than T0 the maximum tree as shown in figure 4.6.2.

43 4.6. Pruning a Tree

Figure 4.6.2: Sub-tree T1.

Sub-tree T1 contains two non-terminal node and four terminal nodes pruning this tree yields

α (T1(t1)) =
0.5− 0.6528

4− 1
= −0.0509

α (T1(t3)) =
0.1786− 0.4028

3− 1
= −0.1121

α (T1(t6)) =
0.2864− 0.3318

2− 1
= −0.0454

Node t3 has the lowest alpha of −0.1121. Prune the tree under node t3 change the non-terminal

node t3 to a terminal node. The result is sub tree T3 less than T2 and T1 as shown in figure

4.6.3.

Figure 4.6.3: Sub-tree T3.

Sub tree T3 contains only two terminal nodes and the root node. It is the best sub tree and

hence we can stop pruning.

Example 3.5: Consider the pruning tree example 3.1 above . Calculating the minimum cost

complexity

Rα (Tt1) = R (Tt) + α | Tt |

Chapter 4 Classification Trees 44

yields

Rα (T0 (t1)) = 1.5343− 6× 0.9541 = 0.9895

Rα (T0 (t2)) = 0.5694− 3× 0.1506 = 0.1176

Rα (T0 (t3)) = 0.4649− 3× 0.1121 = 0.1331

Rα (T0 (t4)) = 0.3194− 2× 0.1080 = 0.1034

Rα (T0 (t6)) = 0.2864− 2× 0.0454 = 0.1956

Node t4 has the lowest cost complexity of 0.1035. Pruning the tree under node t4: Change

the non-terminal node t4 to a terminal node. The first pruning result’s in sub-tree T1 which is

smaller than T0, the maximum tree as shown in figure 4.6.4.

Figure 4.6.4: Sub-tree T1.

The cost complexity of sub-tree T1 is

Rα (T1 (t1)) = 1.5344− 5× 0.0067 = 1.5009

Rα (T1 (t2)) = 0.5694− 2× 0.1933 = 0.1828

Rα (T1 (t3)) = 0.4649− 3× 0.1121 = 0.1286

Rα (T1 (t6)) = 0.2864− 2× 0.0454 = 0.1956

Sub tree T2 has three non-terminal nodes and five terminal nodes. The minimum cost complex-

ity is found at node t3, 0.1285. Prune the tree under node t3 results in sub tree T2 as shown in

figure 4.6.5.

45 4.7. Cross Validation

Figure 4.6.5: Sub-tree T2.

Recalculating the cost complexity

Rα (T2 (t1)) = 0.75− 3× 0.0609 = 0.5673

Rα (T2 (t2)) = 0.25− 2× 0.1933 = −0.1366

Sub tree T2 has one non-terminal node and three terminal nodes. The minimum cost complexity

is found at node t2, −0.1365. Prune the node under t2 results in sub-tree T3 as shown in figure

4.6.6.

Figure 4.6.6: Sub-tree T4.

The minimum cost complexity method and Alpha method yield the same result where the best

sub tree has only the root node and two terminal nodes.

4.7 Cross Validation

Cross validation can be used to choose the optimal complexity α (Therneau et al., 2014):

First fit the maximum tree, T0 , using the entire data set D. Prune T0 and estimate the

misclassification error rate of the sub-tree and the tree, complexity parameter α and cost

complexity .

Chapter 4 Classification Trees 46

Second divide the data set D into k approximately equal sets. Use the k−1 sets as the training

data set Dt. The remaining set serves as a testing data set. The k − 1 subsets serving as

a training data set Dt are used to build a larger tree T0k . Pruning the larger tree creates a

sequence of sub-trees Tk. Use the remaining set, namely the test data set, to estimate the

misclassification error as

Rcv (Tk) =
1

nk

∑

DkǫD

R (Tk) .

Using the misclassification Rcv (Tk) and complexity parameter αk we estimate the cost com-

plexity Rαk
(Tk). Repeating the procedure k times until each sets has a chance to be selected as

testing data set. Similar sub trees are then created and the corresponding values of αk for each

sub-tree are calculated. For a given value of αk, the misclassification error rate are determined

for each sub tree of the maximum tree, these misclassification rates are averaged to get a single

misclassification score as follows

Rcv (T) =
1

K
Rcv (Tk)

for a single value of α this procedure is similar to estimating the misclassification for the tree

that is created using all the data set, and pruned using the value of α. during cross validation

we determine the misclassification error rate at each node of the maximum tree. Since the

maximum tree has different sub-trees, the sub-tree that has smaller misclassification error is

selected to be in the final classification tree model.

Chapter 5

Prediction of the Protein Secondary

Structure

5.1 Introduction

This chapter provides an introduction to proteins and amino acids (section 5.2), their structure

and function (section 5.3), an introduction to the prediction of protein secondary structure

(section 5.4) and a description of the data set used in this study and how this data set is

transformed to an appropirate data structure (section 5.5). The accuracy of the classification

tree (section 5.6), Naive Bayes (section 5.7) and logistic regression (section 5.8) classifiers, using

hold-out and 5-fold cross validation, for the prediction of protein secondary structure for the

three classes, namely helix, sheet and coil, are discussed. Section 5.9 compares the predictive

accuracy of the logistic regression, Naive Bayes and logistic regression classifiers.

5.2 Proteins and Amino Acids

Proteins are made of simple building blocks called amino acids (Pratt et al., 2005; Tsilo, 2009).

Proteins are polymer chains of repeating polypeptide units with side chains attached to each

polypepetide unit. The side chains, also known as residues, are amino acids with different

characteristics (Yüksektepe et al., 2008). Amino acids are built through the connections of

central carbon atoms, C, Hydrogen atoms, H , amino groups (NH2), carboxyl groups (COOH)

and other element found in the side chains of certain amino acids in a particular order. The

sequence of amino acids in a protein chain is given by the primary structure (Yüksektepe et al.,

2008). An example of a amino acid protein structure is shown in figure 5.2.1 below.

47

Chapter 5 Prediction of the Protein Secondary Structure 48

Figure 5.2.1: An example of a protein amino acid structure.
(from http://www.hcc.mnscu.edu/chem/V.27/page_id_17100.html, accessed 01/12/2014.)

Scientists have discovered more than 300 amino acids, but only 20 amino acids are coded by

DNA. Each amino acid has specific characteristics defined by the side chains. The side chains

play a unique role in protein structure (Cravedi, 2010). Two methods of abbreviating or coding

the primary amino acid structure are shown in table 5.1 below.

Table 5.1: Amino acid abbreviations.

Amino Acid Three Letter Abbreviation One Letter Abbrevation

Alanine Ala A
Arginine Arg R

Asparagine Asn N
Aspartic acid (Aspartate) Asp D

Cysteine Cys C
Glutamine Gln Q

Glutamic Acid (Glutamate) Glu E
Glycine Gly G
Histidine His H
Isoleucine IIe I
Leucine Leu L
Lysine Lys K

Methionine Met M
Phenylalanine Phe F

Proline Pro P
Serine Ser S

Threonine Thr T
Tryptophan Trp W
Tyrodine Tyr Y
Valine Val V

49 5.3. Protein Structure and Function

Figure 5.2.2: The four levels of protein structure (From Boundless, 2014).

5.3 Protein Structure and Function

Proteins have four different levels of structure: Primary, Secondary, Tertiary and Quaternary

structure (Whitford, 2005). These levels are characterized from each other by the degree of

complexity in the polypeptide chains. A single protein molecule may hold one or more of these

protein structure levels. Primary structure refers to the linear sequence of amino acids. Protein

primary structure is the foundation of all the other levels of structure (Tsilo, 2009). Secondary

structure is the general three-dimensional form of amino acids. The two most important sec-

ondary structures of proteins, the alpha helix and the beta sheet, were predicted in 1951 by

Linus Pauling and Robert Corey (Kabsch and Sander, 1983). Tertiary structure is the three

dimensional folding of the secondary structures. The quaternary structure is formed from inter-

actions between two or more proteins in their native secondary or tertiary structures (Whitford,

2005). Functionality of most proteins is achieved mainly at the tertiary or quaternary structure

Chapter 5 Prediction of the Protein Secondary Structure 50

level, though there are examples of functional secondary structure proteins (Whitford, 2005).

The four structures of proteins are shown in figure 5.2.2 .

5.4 Secondary Structure Prediction

Protein secondary structure prediction is the prediction of the secondary structure of a protein

based on the primary structure that is from the linear sequence of amino acid (Tsilo, 2009, page

12). The prediction of the secondary structure depends on the amino acid sequences (Zhang

and Rajapakse, 2009). Secondary structure has two properties, hydrogen bond patterns and

backbone geometry. Hydrogen bonded features include turns, bridges, α-helices, ladders and β-

sheets while bends, chirality, SS bonds and solvent exposure are features which are determined

geometrically (Kabsch and Sander, 1983; Tsilo, 2009). An aim of theoretical chemistry and

bioinformatics is to predict the sequence of the protein structure from the primary structure

(Zhang and Rajapakse, 2009).

Some of the computationally based methods that can be used to predict the secondary pre-

dictions include Naive Bayes, logistic regression classifier, classification trees, neural networks,

support vector machines and nearest neighbor methods (Singh et al., 2008).

5.5 The RS126 Data Set

The RS126 data set is used in this study. This data set was designed for the prediction of

protein secondary structure. The data set consists of 126 proteins which do not share sequence

identity with more than 25% over a length of at least 80 residues (Rost and Sander, 1993). The

data set consists of the 126 protein primary and secondary sequences, encoded using alphabetic

letters. As an example consider the actinoxanthin protein (seq_1acx) and secondary structure

sequences shown in table 5.2 below. The secondary structure sequences are automatically

determined or assigned from the experimentally determined tertiary structure by automated

software, namely DSSP (Kabsch and Sander, 1983), STRIDE (Frishman and Argos, 1995) or

DEFINE (Richards and Kundrot, 1988). DSSP, STRIDE and DEFINE utilize eight secondary

structure classes, namely α-helix (H), 310-helix (G), π-helix (I), β-strand (E), isolated β-bridge

(B), turn (T), bend (S) and rest (-). There are many published 8-to-3 states reduction methods

which are known to alter the prediction accuracy of the classifier (Cuff and Barton, 1999). The

secondary structure classes were reduced from 8 classes to 3 as follows in this study:

• α−helix: α-helix (H), 310-helix (G), π-helix (I)

• β−sheet : β-strand (E), isolated β-bridge (B),

51 5.5. The RS126 Data Set

• c−coils: turn (T), bend (S), rest (-)

The DSSP sequences were used as the secondary structure sequences in this study and the

following three binary classifiers are considered:

• Helix against not helix, denoted as H/∼H;

• Sheet against not sheet, denoted as S/∼S;

• Coil against not coil, denoted as C/∼C.

Table 5.2: The actinoxanthin (1acx.concise) entry in the RS126 data set.

seq_1acx: APAFSVSPASGASDGQSVSVSVAAAGETYYIAQCAPVGGQD. . .

seq_MACM_STRMA: APGVTVTPATGLSNGQTVTVSATTPGTVYHVGQCAVVEGVI. . .

seq_KEDA_ACTSL: SAAVSVSPATGLADGATVTVSASATSTSATALQCAILAGRG. . .

seq_NCZS_STRCZ: APTATVTPSSGLSDGTVVKVAGAQAGTAYDVGQCAWVDGVL. . .

OrigSeq: APAFSVSPASGASDGQSVSVSVAAAGETYYIAQCAPVGGQD. . .

cons: ---EEEE---------EEEEEEE----EEEEEEEEEEE--E. . .

dssp: --EEEEE---------EEEEEEE----EEEEEEE-EE--EE. . .

define: EEEEE----------EEEEEEE---------EEEEE---EE. . .

stride: --EEEEE---------EEEEEEE---EEEEEEEEEEE--EE. . .

A binary encoding scheme was used to assign numerical values to the primary and secondary

structure, represented by letters in the input RS126 data files. For each amino acid in the

primary structure sequence there are 21 positions: 20 positions for the letters of amino acids

and 21st for a null input denoted by ∗. The null is required to extend the start and end of

sequences when constructing windows as described below. Each amino acid in the primary

structure sequence is encoded as a 20+1 dimensional vector as per the mapping shown in table

5.3 below.

Once each input amino acid is encoded as a 21 dimensional vector the encoded vectors are

collected in, or concatenated into, a moving window, of a specified size, of encoded amino acid

sequences with the aim of predicting the central secondary structure residue, see figure 5.5.1.

Thus the secondary structure of the jth amino acid, Rj , is predicted from a window of amino

acids, Rj−n, Rj−n+1, . . . , Rj, . . . , Rj+n−1, Rj+n where w = 2n + 1 is the window (Holley and

Karplus, 1989). These vectors are then appropriately stacked to form the encoded data set for

further analysis. This encoding is known as the orthogonal encoding and has the advantage of

not introducing any artificial correlations between the amino acids. However this encoding is

highly redundant and typically results in classifiers with numerous parameters and hence may

take considerable time to estimate/fit (Riis and Krogh, 1996).

Chapter 5 Prediction of the Protein Secondary Structure 52

Table 5.3: The amino acid encoding matrix.

A C D E F G H I K L M N P Q R S T V W Y *

1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1

The secondary structure residues are reduced from 8 to 3 states and encoded as 3 dimensional

vectors as shown in table 5.4.

Table 5.4: The secondary structure encoding.

Helix: H Coil: C Sheet: S


1
0
0







0
1
0







0
0
1




Consider as an example encoding the first four observations of the actinoxanthin sequence,

table 5.2, as represented in table 5.5 for a window of size 3. The primary sequence of amino

acids, used as the input for a classifier, is A, P, A, F. The associated secondary structure, to

be used as the target class for a classifier, is -, -, E , E.

Step one involves adding null indicators to the start and end of the sequence. Since the window is

of size three we need only one null indicator at the start and end of the primary structure/amino

acid sequence. In step 2 the amino acid sequence is encoded (figure 5.5.1) using the orthogonal

encoding scheme as shown in table 5.6.

53 5.5. The RS126 Data Set

Table 5.5: The first four observations of the actinoxanthin (1acx.concise) sequence as considered
in this study.

seq_1acx Primary or amino acid sequence: Input A P A F · · ·

DSSP: 8 states Secondary structure sequence - - E E · · ·
DSSP: 3 states Target class: C C S S · · ·

Step three requires that the associated secondary structure is reduced from 8, -, -, E , E, to 3

states C, C, E , E where C indicates coil, E sheet and H helix, as shown on the bottom row of

table 5.5. The secondary structure is then encoded as a 3 dimensional vector, as per table 5.4.

Table 5.6: Encoding of the actinoxanthin (1acx.concise) entry for a window of size 3.

Observation 1 2 3 4 5 6 7 · · ·
Amino Acid NA A P A F S V · · ·

A 0 1 0 1 0 0 0 · · ·
R 0 0 0 0 0 0 0 · · ·
N 0 0 0 0 0 0 0 · · ·
D 0 0 0 0 0 0 0 · · ·
C 0 0 0 0 0 0 0 · · ·
Q 0 0 0 0 0 0 0 · · ·
E 0 0 0 0 0 0 0 · · ·
G 0 0 0 0 0 0 0 · · ·
H 0 0 0 0 0 0 0 · · ·
I 0 0 0 0 0 0 0 · · ·
L 0 0 0 0 0 0 0 · · ·
K 0 0 0 0 0 0 0 · · ·
M 0 0 0 0 0 0 0 · · ·
F 0 0 0 0 1 0 0 · · ·
P 0 0 1 0 0 0 0 · · ·
S 0 0 0 0 0 1 0 · · ·
T 0 0 0 0 0 0 0 · · ·
W 0 0 0 0 0 0 0 · · ·
Y 0 0 0 0 0 0 0 · · ·
V 0 0 0 0 0 0 1 · · ·
* 1 0 0 0 0 0 0 · · ·

Sec Structure NA - - E E E E · · ·

Target NA C C S S S S · · ·

Encoded Target




0
1
0








0
1
0








0
0
1








0
0
1








0
0
1








0
0
1



 · · ·

In step four the input windows are constructed by concatinating the relevant transposed encoded

amino acids. For a window of size 3 the input pattern contains 3 transposed, encoded input

vectors. In this way each observation, or window, consists of 21 × 3 values, of which 3 are 1’s

Chapter 5 Prediction of the Protein Secondary Structure 54

and the rest are 0’s. Prediction is made for the central amino acid residue. The transposed

encoded target vector can be concatenated to the end of the input window to create a convenient

data structure in step 5. Thus a window and target is constructed for each secondary structure

target element of the observed sequence, for all protein sequences contained in the data set.

The final step is to stack each window and associated target vector in an appropriate data

structure, for example matrix or a data frame in R, suitable for analysis using a classifier.

For a window size of size 13 the input consists of 13 input amino acids that are each encoded

as 21 dimensional vectors, that is each amino acid is assigned a one (1) in the appropriate

position in the encoding vector while the other positions are filled with zero’s (assigned 0’s). In

this way the input vectors will be of dimension (21× 13)× 1 and consist of 13 1’s and 260 0’s.

The secondary structure of the central amino acid in the window is encoded, and subsequently

transposed, to be used as the target vector for the window. These 276× 1 vectors are stacked

to form a matrix for further analysis.

Input
Amino
Acid
(Letter)

Encoded
Amino
Acid
21 dim vector

Encode Encode

A

A

P

F

S

F

G

Secondary
Structure

(Letter)

T1

T2

T3

T4

Tn

Overhang Observation

Last Amino Acid

Second Last Amino Acid

Fifth Amino Acid

Fourth Amino Acid

Third Amino Acid

Second Amino Acid

First Amino Acid

Third Encoded Sequence

Overhang Observation

Concatenate

First Encoded Sequence

Second Encoded Sequence

Fourth Encoded Sequence

Last Encoded Sequence

E

E

−

−

−

Encoded
Secondary
Structure
(Target)

Encoded Amino
Acid Sequence

21*3 vector
(Input)

Figure 5.5.1: Creating the data set for a window of size 3 (From Baxter and Jäger, 2011).

55 5.6. Prediction of Protein Secondary Structure using Classification Trees

5.6 Prediction of Protein Secondary Structure using Clas-

sification Trees

5.6.1 Hold-Out Classification

5.6.1.1 Data Set Partition and Application

For each window size of the orthogonally encoded RS126 data set, the data set is randomly

partitioned into two sets, 50% as the training data set to build the model and 50% as the

test data set to assess the model accuracy as discussed in section 2.5.2. Then for each of

the classifications schemes, namely helix against not helix (H/∼H), sheet against not sheet

(S/∼S) and coil against not coil (C/∼C) a classification tree is fitted on the training data set,

using the rpart package (Therneau et al., 2014). This is done in the following manner: the

rpart() function is used to fit the maximum tree and the prune() function is used to prune

the maximum tree. Each model’s accuracy is assessed using the test data and the predict()

function to predict the class probability. The accuracy of each classification tree is determined

using the confusionMatrix() function in the caret package (Kuhn, 2014). The R code can be

found in appendix A.

5.6.1.2 Classification Tree Accuracy Using Hold-Out Cross Validation

The accuracy of the classification trees are shown in figure 5.6.1, where the x-axis represents

the windows size and the y-axis represents the accuracy expressed as a percentage. A summary

of the classification tree accuracy (%) across the various window sizes and for each class, is

shown in table 5.7 below.

Figure 5.6.1: Test accuracy (%) of the classification trees.

Chapter 5 Prediction of the Protein Secondary Structure 56

The accuracy of the test data for coil against not coil is shown in figure 5.6.1, represented by

the blue dashed line. The minimum accuracy of coil for all windows sizes is 65.70% obtained

in windows size 9. The accuracy value rises and falls until it reaches a maximum of 67.40% at

windows size 15. The mean accuracy for all the windows sizes is 66.28%. Past window size 15,

the accuracy values fluctuate but never exceed the maximium of 67.40%.

The accuracy of the test data for helix against not helix is shown in figure 5.6.1, represented by

a green dashed line. The maximum accuracy for helix is 70.53% obtained at windows size 11.

The minimum values of 69.09% is attained at windows size 21. The mean accuracy for all the

windows sizes is 69.84%. Increasing the windows size above 11 did not increase the accuracy.

Table 5.7: Test accuracy (%) of the classification trees.

Helix (%) Sheet (%) Coil (%)
Minimum 69.09 76.25 65.70

Mean 69.84 76.90 66.28
Maximum 70.53 77.64 67.40

The accuracy of the test data for sheet against not sheet is shown in figure 5.6.1, represented

by a red line. The maximum accuracy for sheet is 77.64% obtained at windows size 7. After

this the accuracy typically falls until reaching the minimum of 76.90% at windows size 23. The

mean accuracy for all the windows sizes is 77.64%. Increasing the windows size above 7 did not

increase the accuracy.

5.6.2 5-fold Cross Validation

5.6.2.1 Data Set Partition and Application

5-fold cross validation of the RS126 data set is applied using the classification tree classifiers.

For each of the 12 different window sizes, randomly partition the data set into five folds. 4

folds, that contain 80% of the data set, are used as the training data and the remaining one

fold, that contains 20% of the data, is used as the test data as discussed in section 2.5.1. The

classification trees are fitted to each training data set using the rpart package (Therneau et al.,

2014) in the following manner: the rpart() function is used to fit the maximum tree using four

folds of data and the prune function is used to prune the maximum tree. The classification tree

accuracy is determined with the remaining fold using the predict() function to predict the class.

The accuracy of the classification tree for the relevant fold of test data set is determined using

the confusionMatrix() function in the caret package (Kuhn, 2014). The procedure is repeated

5 times until each fold has had a chance of being used as the test data set and the accuracy

for each test data set is determined. The overall accuracy is the average of the five accuracy

values determined from the procedure above (as per equation 2.5.1 on page 10). The process is

57 5.6. Prediction of Protein Secondary Structure using Classification Trees

repeated, using the same folds of data, for each of the three classification tasks, namely helix

against not helix (H/∼H), sheet against not sheet (S/∼S) and coil against not coil (C/∼C).

The R code can be found in appendix B.

5.6.2.2 Classification Tree Accuracy Using 5-fold Cross Validation

The accuracy of the classification trees, using 5-fold cross validation is shown in figure 5.6.2,

where the x-axis represents the windows sizes and the y-axis represents the accuracy expressed

as percentage. A summary of the classification tree accuracy, across the various widow sizes

and for each class, is shown in table 5.8 below.

Figure 5.6.2: Test accuracy (%) of the classification trees using 5-fold cross validation.

The accuracy of coil against not coil is shown in figure 5.6.2, represented by a blue dashed line.

The minimum accuracy of coil is 49.79% obtained in window size 15. The accuracy values rise

and fall until it reaches the maximum of 51.45% at window size 17. The mean accuracy for all

the windows sizes is 50.53%. Past window size 21 the accuracy values are decreasing.

Table 5.8: Test accuracy (%) of the classification trees using 5-fold cross validation.

Helix (%) Sheet (%) Coil (%)
Minimum 61.96 73.85 49.79

Mean 63.53 74.48 50.53
Maximum 65.24 75.43 51.45

The accuracy of helix against not helix is shown in figure 5.6.2, represented by a green dashed

line. The maximum accuracy for helix is 65.24% obtained at window size 3, the accuracy values

Chapter 5 Prediction of the Protein Secondary Structure 58

fluctuate until it reaches the minimum value of 61.96% at window size 15. The mean accuracy

for all the windows sizes is 63.53%. Increasing the windows size did not increase accuracy.

The accuracy of sheet against not sheet is shown in figure 5.6.2, represented by a red line. The

accuracy is 74.62% at windows size 3, after that when we increase the windows size the values

for the accuracy rises and falls until it reaches a minimum of 73.85% at window size 13 and

continues to fluctuate until reaches the maximum accuracy of 75.43% obtained at windows size

23. The mean accuracy for all the windows sizes is 74.48%.

5.7 Prediction of Protein Secondary Structure using Naive

Bayes Classifiers

5.7.1 Hold out classification

5.7.1.1 Data Set Partition and Application

For each window size of the orthogonally encoded RS126 data set, the data set is randomly

partitioned into two sets, 50% as the training data set to build the model and 50% as the

test data to assess the model accuracy as discussed in section 2.5.2. Then for each of the

classification schemes, namely helix against not helix (H/∼H), sheet against not sheet (S/∼S)

and coil against not coil (C/∼C) a Naive Bayes classifier is fitted on the training data set

using the e1071 package (Dimitriadou et al., 2009) in the following manner: the naiveBayes()

function is used to fit the Naive Bayes model on the training data set. Each model’s accuracy

is determined using the test data set and the predict() function to predict the class probability.

The accuracy of each of the Naive Bayes classifiers is determined using the confusionMatrix()

function in the caret package (Kuhn, 2014). The R code can be found in appendix C.

5.7.1.2 Naive Bayes Classifier Accuracy Using Hold-Out Cross Validation

The accuracy of the Naive Bayes classifiers are shown in figure 5.7.1, where the x-axis represents

the windows sizes and the y-axis represents the accuracy (%). A summary of the Naive Bayes

classifiers accuracy, across the various window sizes and each class, is shown in table 5.9.

The accuracy of the test data for coil against not coil is shown in figure 5.7.1, represented by a

blue dashed line. The maximum accuracy of 70.78% is attained at window size 5. After this the

accuracies are less, but reasonably similar, until window size 21 where the accuracy drops until

it reaches the minimum of 66.98% at window size 35. The mean accuracy for all the windows

sizes is 69.68%.

59 5.7. Prediction of Protein Secondary Structure using Naive Bayes Classifiers

Figure 5.7.1: Test accuracy (%) of the Naive Bayes classifier.

The accuracy of the test data for helix against not helix is shown in figure 5.7.1, represented

by a green dashed line. The minimum accuracy of helix is 70.88% obtained at windows size

3. The accuracy values incerease until the maximum of 75.02% is attained at windows size 15.

The mean accuracy for all the windows sizes is 73.96%. Windows sizes above 7 have reasonably

similar accuracy.

Table 5.9: Test accuracy (%) of the Naive Bayes classifier.

Helix(%) Sheet(%) Coil(%)

Minimum 70.88 77.63 66.98
Mean 73.96 79.37 69.68
Maximum 75.02 80.07 70.78

The accuracy of the test data for sheet against not sheet is shown in figure 5.7.1, represented

by a red line. The maximum accuracy for sheet is 80.07% obtained at windows size 23. The

minimum of 77.63% attained at windows size 3 however this never exceed the maximum at

window size 23. The mean accuracy for all the windows sizes is 79.37%.

Increasing the windows size did not increase the accuracy of the Naive Bayes approach for coil

after window size 5. Incresing the window sizes for each of helix and sheet will increase the

accuracy of the Naive Bayes classifier approach.

Chapter 5 Prediction of the Protein Secondary Structure 60

5.7.2 5-fold Cross Validation

5.7.2.1 Data Set Partition and Application

5-fold cross validation of the RS126 data set is applied using the Naive Bayes classifiers. For

each of the 12 different window sizes, randomly partition the data set into five folds. 4 folds,

that contain 80% of the data set, are used as the training data and the remaining one fold, that

contain 20% of the data, is used as the test data set as discussed in section 2.5.1. The Naive

Bayes classifiers are fitted to the training data set using the e1071 package (Dimitriadou et al.,

2009) in the following manner: The naiveBayes() function is used to fit the classifier using

the training data. The model accuracy is determined using the predict() function to predict

the class probability. The accuracy of the Naive Bayes classifier for the relevant test data is

determined using the confusionMatrix() function in the caret package (Kuhn, 2014). The

process is repeated 5 times until each fold has had a chance of being used as the test data set

and the accuracy for each test data set is determined. The overall accuracy is the average of the

five accuracy values determined from the procedure above (as per equation 2.5.1 on page 10).

The process is repeated, using the same folds of data, for each of the three classification tasks,

namely helix against not helix (H/∼H), sheet against not sheet (S/∼S) and coil against not

coil (C/∼C). The R code can be found in appendix D.

5.7.2.2 Naive Bayes Classifier Accuracy using 5-fold Cross Validation

The accuracy of the Naive Bayes classifiers, using 5-fold cross validation, is shown in figure

5.7.2, where the x-axis represents the windows sizes and the y-axis represents the accuracy (%).

A summary of the Naive Bayes classifiers, across the various window sizes and for each class,

is shown in table 5.10.

Table 5.10: Test accuracy (%) of the Naive Bayes classifiers using 5-fold cross validation.

Helix (%) Sheet (%) Coil (%)
Minimum 56.76 67.43 49.79

Mean 59.09 70.14 50.99
Maximum 63.10 73.35 52.09

The accuracy of the test data for coil against not coil is shown in figure 5.7.2, represented by

a blue dashed line. The accuracy is 50.70% at window size 3. As the windows size increases

the accuracy fluctuates until it reache the maximum accuracy of 52.09% at window size 7. The

accuracy subsequently drops down until reaches a minimum of 49.79% at window size 11. Past

window size 7, the accuracy values fluctuate but never exceed the maximim of 52.09%. The

mean accuracy for all the window sizes is 50.99%.

61

5.8. Prediction of Protein Secondary Structure using Logistic Regression

Classifiers
The accuracy of the test data for helix against not helix is shown in figure 5.7.2, represented

by a green dashed line. The maximum accuracy of helix is 63.10% obtained at window size 3.

The accuracy values rise and fall but never exceed the maximum until reaching the minimum of

56.76% at windows size 35. The mean accuracy for all the windows sizes is 59.09%. Increasing

the window size reduces the accuracy.

Figure 5.7.2: Test accuracy (%) of the Naive Bayes classifier using 5-fold cross validation.

The accuracy of the test data for sheet against not sheet is shown in figure 5.7.2, represented by

a red line. The maximum accuracy for sheet is 73.35% obtained at windows size 3. The accuracy

fluctuates, but has a decreasing trend, until reaching the minimum of 67.43% at windows size

19. The accuracy never exceeds the maximum obtained at window size 3. The mean accuracy

for all the window sizes is 70.14%. Increasing the windows size did not increase the accuracy.

5.8 Prediction of Protein Secondary Structure using Lo-

gistic Regression Classifiers

5.8.1 Hold-Out Cross Validation

5.8.1.1 Data Set Partition and Application

For each window size of the orthogonally encoded RS126 data set, the data set is randomly

partitioned into two sets, 50% as the training data set to build the model and 50% as the

test data to assess the model accuracy as discussed in section 2.5.2. Then for each of the

classification schemes, namely helix against not helix (H/∼H), sheet against not sheet (S/∼S)

Chapter 5 Prediction of the Protein Secondary Structure 62

and coil against not coil (C/∼C) a binary logistic regression model is fitted to the training

data set using SPSS (IBM Corp, 2013). This is done because when we attempted to fit the

relevant models in R (R Core Team, 2014) using the GLM() function the algorithm didn’t

converge, probably owing to the large number of independent binary variables with a binary

dependent variable. The binary logistic regression function in SPSS was used to predict the

class probability of the test data set and the result of the class probability prediction was read

from SPSS into R. The accuracy of the logistic regression model was determined using the

confusionMatrix() function in the caret package (Kuhn, 2014) in R. The R code can be found

in appendix E.

5.8.1.2 Logistic Regression Classifier Accuracy

The accuracy of the logistic regression classifier is shown in figure 5.8.1, where the x-axis

represents the windows sizes and the y-axis represents accuracy(%). A summary of the logistic

regression classifier accuracy, across the various window sizes and for each class, is shown in

table 5.11 below.

Figure 5.8.1: Test accuracy (%) of the logistic regression classifier.

The accuracy of the test data for coil against not coil is shown in figure 5.8.1, represented by

a blue dashed line. The minimum accuracy is 68.38% at window size 3. The accuracy values

tend to fluctuate in this range increase with increasing window size and reaches a maximum

accuracy of 72.73% at window size 35. The mean accuracy for all the windows sizes is 71.79%.

The accuracy of the test data for helix against not helix is shown in figure 5.8.1, represented

by a green dashed line. The minimum accuracy of helix is 71.02% obtained at windows size 3,

63

5.8. Prediction of Protein Secondary Structure using Logistic Regression

Classifiers
the accuracy values increase with increasing window size and reaches a maximum accuracy of

77.39% at windows size 35. The mean accuracy for all the windows sizes is 75.55%.

The accuracy of the test data for sheet against not sheet is shown in figure 5.8.1, represented by

a red line. The minimum accuracy for sheet is 77.79% obtained at windows size 3, the accuracy

values increase with increasing window size and reaches a maximum accuracy of 80.76% at

windows size 35. The mean accuracy for all the windows sizes is 79.91%.

Table 5.11: Test accuracy (%) of the logistic regression classifier.

Helix (%) Sheet (%) Coil (%)
Minimum 71.02% 77.79% 68.38%

Mean 75.55% 79.91% 71.79%
Maximum 77.39% 80.76% 72.73%

5.8.2 5-fold Cross Validation

5.8.2.1 Data Set Partition and Application

5-fold cross validation of the RS126 data set is applied using the logistic regression classifiers.

For each of the 12 different window sizes, randomly partition the data set into five folds. 4 folds,

that contain 80% of the data set, are used as the training data and the remaining one fold, that

contains 20% of the data, is used as the test data as discussed in section 2.5.1. The accuracy

of the 5-fold cross validated logistic regression classifier is determined in the following manner:

fit the logistic regression using the binary logistic regression function in SPSS (IBM Corp,

2013) to the training data. Predict the class probability of the test data set. The result of the

class probability prediction was read from SPSS into R. The accuracy of the logistic regression

classifier was determined using the confusionMatrix() function in the caret package (Kuhn,

2014) in R. Repeat the procedure 5 times until each fold has had a chance of being used as

the test data set. The overall accuracy is the average of the five accuracy values determined

from the procedure above (as per equation 2.5.1 on page 10). The process is repeated, using

the same folds of data, for each of the three classification tasks, namely helix against not helix

(H/∼H), sheet against not sheet (S/∼S) and coil against not coil (C/∼C). The R code can be

found in appendix F.

5.8.2.2 Logistic Regression Classifier Accuracy Using 5-fold Cross Validation

The accuracy of the logistic regression using 5-fold cross validation is shown in figure 5.8.2,

where the x-axis represents the windows sizes and the y-axis represents the accuracy(%). A

summary of the logistic regression classifier accuracy using 5-fold cross validation, across the

various windows sizes and for each class, is shown in table 5.12 below.

Chapter 5 Prediction of the Protein Secondary Structure 64

Figure 5.8.2: Test accuracy (%) of the logistic regression classifier using 5-fold cross validation.

The accuracy of the test data for coil against not coil is shown in figure 5.8.2, represented by

a blue dashed line. The minimum accuracy is 68.46% at window size 3. The accuracy values

increase with window size and reach the maximum accuracy of 73.39% at window size 35. The

mean accuracy for all the windows sizes is 71.87%.

The accuracy of the test data for helix against not helix is shown in figure 5.8.1, represented

by a green dashed line. The minimum accuracy of helix is 71.03% obtained at windows size 3.

The accuracy values increase with the window size and reach the maximum accuracy of 77.74%

at window size 35. The mean accuracy for all the windows sizes is 75.50%.

The accuracy of the test data for sheet against not sheet is shown in figure 5.8.1, represented

by a red line. The minimum accuracy for sheet is 77.85% obtained at windows size 3. The

accuracy values increase with the window size and reach the maximum accuracy of 81.22% at

windows size 35. The mean accuracy for all the windows sizes is 79.93%.

Table 5.12: Test accuracy (%) of the logistic regression classifier using 5-fold cross validation.

Helix (%) Sheet (%) Coil (%)
Minimum 71.03 77.85 68.46

Mean 75.50 79.93 71.87
Maximum 77.74 81.22 73.39

65

5.9. Comparison of the Naive Bayes, Classification Tree and Logistic Regression

Classifiers
5.9 Comparison of the Naive Bayes, Classification Tree

and Logistic Regression Classifiers

The objective of the study is to compare the performance of the Naive Bayes, classification

tree and logistic regression classifiers using hold-out and 5-fold cross validation when predicting

protein secondary structure. This study has considered the three main or primary secondary

structure classes, namely helix, sheet and coil.

In this section, the best classifier for each classification task, namely helix against not helix

(H/∼H), sheet against not sheet (S/∼S) and coil against not coil (C/∼C), are compared in

terms of their performance. This is done by looking at the highest prediction accuracies for

each method at each window size. 95% confidence intervals for each classifier are constructed.

5.9.1 Helix against not Helix

The protein secondary structure prediction accuracies (%) for predicting helix against not

helix using the 12 different window sizes for the appropriately encoded RS126 test data for the

Naive Bayes, classification trees and logistic regression classifiers using hold-out and 5-fold cross

validation are shown in table 5.13. These data are graphed in figure 5.9.1, where the x-axis

represents the window size and the y-axis represents the accuracy (%). The performance of the

six classifiers when predicting helix against not helix secondary protein structure, as shown in

table 5.13, are summarised in table 5.14.

Table 5.13: Test accuracy (%), for all window sizes, when predicting helix against not helix for
the Naive Bayes, classification tree and logistic regression classifiers using hold-out or 5-fold
cross validation.

Hold-out validation 5−fold cross validation
Window Naive Logistic Classification Naive Logistic Classification

Size Bayes regression tree Bayes regression tree

3 70.88402 71.01679 70.11307 63.09805 71.03055 65.23725
5 72.67432 72.98698 69.95032 60.48195 72.82603 63.51824
7 74.33613 74.27189 70.11307 59.64003 74.31218 63.42588
9 73.93353 75.55251 69.81326 59.06529 75.05042 64.08596
11 74.56741 75.83519 70.53281 59.87823 75.59200 63.90423
13 73.98492 76.20353 70.27583 59.23375 75.87493 62.37284
15 75.02142 76.38342 70.06168 57.58713 76.19554 61.96240
17 74.94432 76.72606 70.12164 57.86377 76.72499 62.86486
19 74.7216 76.73891 69.46205 58.50574 76.73651 64.29855
21 74.14768 76.76889 69.08515 58.47828 76.90562 62.98154
23 74.66164 76.72606 69.29930 58.43479 77.00964 64.35569
35 73.59089 77.38564 69.27360 56.75881 77.73634 63.38914

Chapter 5 Prediction of the Protein Secondary Structure 66

The mean accuracy for the three classifiers are in the range of 59.09% to 75.55%. From the graph

and summary tables it is apparent that the Naive Bayes classifier, using 5-fold cross validation,

achieved the lowest accuracies. The classification tree classifiers, using 5-fold cross validation,

performed second worst. The logistic regression classifier, using 5-fold cross validation, achieves

the highest accuracy when compared to all other classification approaches considered in this

study. The difference in the accuracy between the two logistic regression approaches is very

small at all 12 different window sizes.

Figure 5.9.1: Comparison of the test accuracies (%) for predicting helix against not helix for
each of the Naive Bayes, classification tree and logistic regression classifiers using hold-out or
5-fold cross validation.

Table 5.14: Summary of the test accuracy (%), amoungst all window sizes, when predicting
helix against not helix for the Naive Bayes, classification tree and logistic regression classifiers
using hold-out or 5-fold cross validation.

Hold-out validation 5−fold cross validation
Classification Naive Logistic Classification Naive Bayes logistic Classification

approach Bayes regression tree Bayes regression tree

Minimum 70.88 71.02 69.09 56.76 71.03 61.96
Mean 73.96 75.55 69.84 59.09 75.50 63.53

Maximum 75.02 77.39 70.53 63.10 77.74 65.24

To determine where the prediction accuracies are different from each other, heuristic confi-

dence intervals based on the accuracy estimate at each window size for each binary classifier

67

5.9. Comparison of the Naive Bayes, Classification Tree and Logistic Regression

Classifiers
were constructed. The results were obtained using the R function in appendix G. The plots

of the confidence intervals for the three classifiers, using different validation estimators, are

shown in figure 5.9.2 below. Some of the confidence intervals overlap. The Naive Bayes 5-fold

cross validation achieves accuracy between 58.05% and 60.12% accuracy and is the lowest 95%

confidence interval. The logistic regression classifier, using 5-fold cross validation, achieves the

highest 95% confidence interval. There is no different in the accuracy for either validation

approaches using the logistic regression classifier. We can conclude that logistic regression clas-

sifier, with a large window size, performs best for predicting helix against not helix secondary

structure.

Figure 5.9.2: Heuristic confidence intervals: Comparison of the test accuracies (%) for predicting
helix against not helix for each of the Naive Bayes, classification tree and logistic regression
classifiers using 5-fold cross validation.

5.9.2 Coil against not Coil

The protein secondary structure prediction accuracies (%) for predicting coil against not coil

using the 12 different window sizes for the appropriately encoded RS126 tesr data for the

Naive Bayes, classification trees and logistic regression classifiers using hold-out and 5-fold

cross validation are shown in table 5.17. These data are graphed in figure 5.16, where the

x-axis represents the window size and the y-axis represents the accuracy (%). The performance

of the six classifiers when predicting helix against not helix secondary protein structure, as

shown in table 5.13, are summarised in table 5.14.

Chapter 5 Prediction of the Protein Secondary Structure 68

Table 5.15: Test accuracy (%), for all window sizes, when predicting coil against not coil for
the Naive Bayes, classification tree and logistic regression classifiers using hold-out or 5-fold
cross validation.

Hold-out validation 5−fold cross validation
Window Naive Logistic Classification Naive Logistic Classification

Size Bayes regression tree Bayes regression tree

3 68.49139 68.37845 65.98132 50.70346 68.45487 49.99315
5 70.77872 70.80264 66.36683 50.81007 70.77875 49.90343
7 70.71019 71.32517 66.30686 52.09042 71.43977 51.30394
9 70.59882 71.81771 65.69862 51.65751 71.85148 50.0258
11 70.62452 71.96762 66.33256 49.7881 71.86007 49.89632
13 70.16191 72.16892 66.20406 51.22451 71.96419 51.12405
15 70.12764 72.3017 67.40341 50.2668 72.15164 49.79900
17 69.69931 72.48158 66.35826 51.15903 72.69632 51.45122
19 69.50227 72.49872 66.72663 51.50126 72.46507 49.83768
21 69.75071 72.57153 65.89566 50.99672 72.63283 51.22780
23 68.78266 72.48158 65.77572 51.23207 72.77674 50.93262
35 66.98364 72.73000 66.28116 50.40041 73.38771 50.87119

The mean accuracy for the three classifiers are in the range of 50.09% to 71.87%. From the

graph and summary tables it is apparent that the Naive Bayes classifier, using 5-fold cross

validation, achieved the lowest accuracies. The logistic regression classifier, using 5-fold cross

validation, achieves the highest accuracy when compared to all other classification approaches

considered in this study. The difference in the accuracy between the two logistic regression

approaches is very small at all 12 different window sizes.

Table 5.16: Summary of the test accuracy (%), amoungst all window sizes, when predicting coil
against not coil for the Naive Bayes, classification tree and logistic regression classifiers using
hold-out or 5-fold cross validation.

Hold-out validation 5−fold cross validation
Classification Naive Logistic Classification Naive Bayes logistic Classification

approach Bayes regression tree Bayes regression tree

Minimum 66.98 68.38 65.70 49.79 68.46 49.80
Mean 69.68 71.79 66.28 50.99 71.87 50.53

Maximum 70.78 72.73 67.40 52.09 73.39 51.45

69

5.9. Comparison of the Naive Bayes, Classification Tree and Logistic Regression

Classifiers
Figure 5.9.3: Comparison of the test accuracies (%) for predicting coil against not coil for each
of the Naive Bayes, classification tree and logistic regression classifiers using hold-out or 5-fold
cross validation.

Heuristic confidence intervals based on the accuracy estimate at each window size for each

binary classifier were constructed. The results were obtained using the R function in appendix

G. The plots of confidence intervals for the three classifiers, using different validation estimators,

are shown in figure 5.9.4 below. Some of the confidence intervals overlap. The Naive Bayes

5-fold cross validation achieves accuracy between 50.58% and 51.39% accuracy and is the lowest

95% confidence interval. The logistic regression classifier, using 5-fold cross validation, achieves

the highest 95% confidence interval. There is no different in the accuracy for either validation

approaches using the logistic regression classifier. We can conclude that logistic regression

classifier, with a large window size, performs best for predicting coil against not coil secondary

structure.

Chapter 5 Prediction of the Protein Secondary Structure 70

Figure 5.9.4: Heuristic confidence intervals: Comparison of the test accuracies (%) for predicting
coil against not coil for each of the Naive Bayes, classification tree and logistic regression
classifiers using hold-out or5-fold cross validation.

5.9.3 Sheet against not Sheet

The protein secondary structure prediction accuracies (%) for predicting sheet against not

sheet using the 12 different window sizes for the appropriately encoded RS126 test data for the

Naive Bayes, classification trees and logistic regression classifiers using hold-out and 5-fold cross

validation are shown in table 5.17. These data are graphed in figure 5.9.5, where the x-axis

represents the window size and the y-axis represents the accuracy (%). The performance of the

six classifiers when predicting helix against not helix secondary protein structure, as shown in

table 5.17, are summarised in table 5.18.

71

5.9. Comparison of the Naive Bayes, Classification Tree and Logistic Regression

Classifiers
Table 5.17: Test accuracy (%), for all window sizes, when predicting sheet against not sheet
for the Naive Bayes, classification tree and logistic regression classifiers using hold-out or 5-fold
cross validation.

Hold-out validation 5−fold cross validation
Window Naive Logistic Classification Naive Logistic Classification

Size Bayes regression tree Bayes regression tree

3 70.88402 77.79253 77.34087 73.35286 77.85146 74.62300
5 72.67432 78.67912 76.97250 72.56641 78.75358 74.55771
7 74.33613 78.97036 77.64071 71.43852 79.03474 74.02791
9 73.93353 79.76700 77.41797 71.91735 79.61413 73.91903
11 74.56741 80.0968 77.21237 71.282 79.81754 74.47340
13 73.98492 80.25527 76.77546 69.93202 80.06732 73.84522
15 75.02142 80.49512 76.72406 69.6489 80.26074 74.40113
17 74.94432 80.52082 76.47563 68.38525 80.60060 74.21308
19 74.7216 80.48655 76.71550 67.42764 80.58639 74.09829
21 74.14768 80.53366 76.72406 68.98405 80.68086 74.94365
23 74.66164 80.52082 76.25289 69.16735 80.69902 75.43447
35 73.59089 80.76066 76.56986 67.52183 81.2179 75.25989

The mean accuracy for the three classifiers are in the range of 70.14% to 79.93%. From the

graph and associated tables it is apparent that the Naive Bayes classifier, using 5-fold cross

validation, achieved the lowest accuracies. The logistic regression classifier, using 5-fold cross

validation, achieves the highest accuracy when compared to all other classification approaches

considered in this study. The difference in the accuracy between the two logistic regression

approaches is very small at all 12 different window sizes.

Table 5.18: Summary of the test accuracy (%), amoungst all window sizes, when predicting
sheet against not sheet for the Naive Bayes, classification tree and logistic regression classifiers
using hold-out or 5-fold cross validation.

Hold-out validation 5−fold cross validation
Classification Naive Logistic Classification Naive logistic Classification

approach Bayes regression tree Bayes regression tree

Minimum 70.88 77.79 76.25 67.43 77.85 73.85
Mean 73.96 79.91 76.90 70.14 79.93 74.48

Maximum 75.02 80.76 77.64 73.35 81.22 75.44

Chapter 5 Prediction of the Protein Secondary Structure 72

Figure 5.9.5: Comparison of the test accuracies (%) for predicting sheet against not sheet for
each of the Naive Bayes, classification tree and logistic regression classifiers using hold-out or
5-fold cross validation.

Heuristic confidence intervals based on the accuracy estimate at each window size for each

binary classifier were constructed. The results were obtained using the R function in appendix

G. The plots of confidence intervals for the three classifiers, using different validation estimators,

are shown in figure 5.9.5 below. Some of the confidence intervals overlap. The Naive Bayes

5-fold cross validation achieves accuracy between 58.05% and 60.12% accuracy and is the lowest

95% confidence interval. The logistic regression classifier using 5-fold cross validation classifier

achieves the highest 95% confidence interval. There is no difference in the accuracy for either

validation approaches using the logistic regression classifier. We can conclude that logistic

regression classifier, with a large window size, performs best for predicting sheet against not

sheet secondary structure.

73

5.9. Comparison of the Naive Bayes, Classification Tree and Logistic Regression

Classifiers
Figure 5.9.6: Heuristic confidence intervals: Comparison of the test accuracies (%) for predicting
sheet against not sheet for each of the Naive Bayes, classification tree and logistic regression
classifiers using hold-out or 5-fold cross validation.

Chapter 5 Prediction of the Protein Secondary Structure 74

Chapter 6

Conclusion

6.1 Introduction

This chapter provides conclusion and discussion of the study investigated in section 6.2. Future

research is identified in section 6.3.

6.2 Conclusions and Discussion

Predicting the protein secondary structure is an important step in the prediction of the tertiary

structure of proteins. This is because knowledge of the tertiary structure of proteins help in

determining their functions.

The main aim of this thesis was to compare the performance of classification tree, Naive Bayes

and logistic regression using hold-out and 5-fold cross validation in predicting the secondary

structure of proteins from their amino acid sequences using the three classification tasks, namely

helix against not helix (H/∼H), sheet against not sheet (S/∼S) and coil against not coil (C/∼C).

The following conclusions were derived:

• Naive Bayes using 5-fold cross validation achieved the lowest accuracy for predicting helix

against not helix and classification trees using 5-fold cross validation achieved the lowest

accuracies for both coil against not coil and sheet against not sheet classifications.

• The logistic regression classifier approach achieved the highest accuracy when compared to

classification tree and Naive Bayes classifiers for each classification task, namely predicting

helix against not helix, sheet against not sheet and coil against not coil.

• The logistic regression classifier accuracy is dependent on the window size; there is a

positive relationship between the accuracy (%) and the window size.

75

Chapter 6 Conclusion 76

• The Naive Bayes and classification tree have optimal window size.

• The classification tree, Naive Bayes and logistic regression classifiers using the hold-out

cross validation approach achieved higher accuracy than the 5-fold cross validation for

predicting the protein secondary structure for the three classes, namely helix, sheet and

coil as given in section 5.9.

The results of the classification tree, Naive Bayes and logistic regression classifiers using hold-out

and 5-fold cross validation were compared with the result of a support vector machine classifier

based on the work of Hua and Sun (2001) and Tsilo (2009). Both these studies used the RS126

data set, utlised the same orthogonal primary structure encoding scheme and similar 8 to 3

secondary structure class reductions (Cuff and Barton, 1999; Tsilo, 2009). For all approaches

three binary classifiers were considered, namely helix against not helix (H/∼H), sheet against

not sheet (S/∼S) and coil against not coil (C/∼C) . The accuracy results obtained using the

logistic regression classifier using hold-out and 5-fold cross validation compared are with these

support vector machine classifiers constructed using 7-fold cross validation that were fitted to

7 different window sizes are shown in table 6.1.

Table 6.1: Comparison of the effect of change in window size on logistic regression and support
vector machine Hua and Sun (2001).

Binary classifier
Logistic regression Support Vector Machines

Hold-out 5-fold 7-fold

Window
cross validation cross validation cross validation

Helix Sheet Coil Helix Sheet Coil Helix Sheet Coil

5 72.99 78.68 70.80 72.83 78.75 70.78 77.55 80.89 71.19
7 74.27 78.97 71.33 74.31 79.03 71.44 79.36 81.22 71.20
9 75.55 79.77 71.82 75.05 79.61 71.85 80.28 81.25 71.12
11 75.84 80.10 71.97 75.59 79.82 71.86 80.36 80.82 69.77
13 76.20 80.26 72.17 75.88 80.07 71.96 79.74 80.14 68.82
15 76.38 80.50 72.30 76.20 80.26 72.15 79.63 79.63 68.29
17 76.73 80.52 72.48 76.73 80.60 72.70 79.36 79.36 67.10

17 17 17 17 17 17 11 9 7

Table 6.1 shows how a change in the window size effects the protein secondary structure predic-

tion accuracy using either a support vector machine classifier Hua and Sun (2001) or a logistic

regression classifier. For the logistic regression classifier, increasing the window size leads to

an increase in accuracy prediction, while for the support vector machine there is an optimal

window size. Using support vector machines to predict helix against not helix the optimum

window size is 11, for sheet against not sheet 9 and for coil against not coil 7.

77 6.3. Future Study

Table 6.2: Comparison of the logistic regression result with support vector machine using result
of Hua and Sun (2001)and Tsilo (2009).

Binary classifier Helix against Sheet against Coil against
not helix not sheet not coil
(H/∼H) (S/∼S) (C/∼C)

Support vector machines (Hua and Sun, 2001) 79.74 80.40 69.77
Support vector machines (Tsilo, 2009) 73.74 80.32 68.31

Logistic regression cross validation [This study] 77.74 81.22 73.39

There is a clear difference when classifying coil against not coil (C/∼C), a smaller difference

when classifying helix against not helix (H/∼H) and a small difference is observed for the overall

accuracy when classifying sheet against not sheet (S/∼S). Among all the methods the highest

accuracy is observed for sheet against not sheet (S/∼S) with the highest average accuracy

being approximately 81.22%. Coil against not coil (C/∼C) has the lowest average accuracies.

Overall, the logistic regression classifier approach gives better result as compared to support

vector machine classifiers based on the result in table 6.2.

6.3 Future Study

A problem was encountered when attempting to fit the logistic regression model in R (R Core

Team, 2014). This is probably as a result of the iterative method used to estimate the various

parameters being affected by the large number of independent binary variables. The binary

logistic regression function in SPSS (IBM Corp, 2013) was used to predict the class probability

of the test data set and the result of the class probability prediction was read from SPSS into

R. Ideally it would be easier to compare these classifiers if the classification process could be

facilitated in R. Alternatively it would be easier to assess these logistic regression classifiers if

SPSS had a function to determine the accuracy of the logistic regression classifier.

Bibliography

Altman, D. G. and Bland, J. M. (1994). Statistics Notes: Diagnostic tests 1: sensitivity and

specificity. British Medical Journal , 308 (6943), 1552.

Baxter, J. and Jäger, G. (2011). Protein secondary structure prediction: an application of

Bayesian adaptive regression trees. In 53rd Annual Conference of the South African Statistical

Association, Pretoria, South Africa. CSIR Convention Centre.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York.

Boundless (2014). Protein Structures. In Boundless Anatomy and Phys-

iology. Boundless. https://www.boundless.com/physiology/textbooks/

boundless-anatomy-and-physiology-textbook/general-chemistry-2/

organic-compounds-39/protein-structures-317-11437/ Accessed: 03/01/2015.

Breiman, L., Friedman, J. H., Stone, C. J., and Olshen, R. A. (1984). Classification and

Regression Trees. Chapman & Hall/CRC, Boca Raton, London, New York, Washington.

Burman, P., Chow, E., and Nolan, D. (1994). A cross-validatory method for dependent data.

Biometrika, 81, 377–403.

Cravedi, K. (2010). Expanding the Genetic Code with Unnatural Amino Acids. Department

of Chemistry, The Catholic University of America.

Cuff, J. A. and Barton, G. J. (1999). Evaluation and improvement of multiple sequence methods

for protein secondary structure prediction. Proteins: Structure, Function, and Bioinformat-

ics , 34 (4), 508–519.

Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A., and Leisch, M. F.

(2009). Package e1071. R Software package, avaliable at http://cran.rproject. org/web/-

packages/e1071/index. html .

Esposito, F., Malerba, D., Semeraro, G., and Kay, J. (1997). A comparative analysis of methods

for pruning decision trees. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 19 (5), 476–491.

79

Bibliography 80

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing

of Environment , 80 (1), 185–201.

Frishman, D. and Argos, P. (1995). Knowledge-based protein secondary structure assignment.

Proteins: Structure, Function, and Bioinformatics, 23 (4), 566–579.

Gareth, J., Daniela, W., Hastie, T., and Tibshirani, R. (2013). Introduction to Statistical

Learning with Applications in R. Springer.

Gelman, A. and Wang, W. (2013). A problem with the use of crossvalidation for selecting among

multilevel models. In International Society for Bayesian Analysis, OBayes13. 2015.20.01.

Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Concepts and Techniques (Third ed.).

The Morgan Kaufmann Series in Data Management Systems. Amsterdam: Elsevier/Morgan

Kaufmann.

Han, J. and Micheline, K. (2006). Data Mining: Concepts and Techniques (Second ed.). Morgan

Kaufmann.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning,

Volume 2. Springer.

Holley, L. H. and Karplus, M. (1989). Protein secondary structure prediction with a neural

network. Proceedings of the National Academy of Sciences, 86 (1), 152–156.

Hua, S. and Sun, Z. (2001). A novel method of protein secondary structure prediction with

high segment overlap measure: support vector machine approach. Journal of Molecular

Biology , 308 (2), 397–407.

IBM Corp (Released 2013). IBM SPSS Statistics for Windows, Version 22.0. IBM Corp:

Armonk, NY.

Izenman, A. J. (2009). Modern Multivariate Statistical Techniques: Regression, Classification,

and Manifold Learning. Springer.

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern recog-

nition of hydrogen-bonded and geometrical features. Biopolymers, 22 (12), 2577–2637.

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical

Software, 28 (5), 1–26.

Kuhn, M. (2014). caret: Classification and Regression Training. R package version 6.0-30.

81 Bibliography

Labatut, V. and Cherifi, H. (2012). Accuracy measures for the comparison of classifiers. arXiv

preprint arXiv:1207.3790 .

Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information

retrieval. In Machine learning: ECML-98, 4–15. Springer.

Mahmood, A. M., Mrithyumjaya, P. G. V. G. K., and Kuppa, R. (2010). A new pruning

approach for better and compact decision trees. International Journal on Computer Science

& Engineering .

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive bayes text

classification. In AAAI-98 workshop on learning for text categorization, Volume 752, 41–48.

Muchai, E. and Odongo, L. (2014). Comparison of crisp and fuzzy classification trees using

Gini index impurity measure on simulated data. European Scientific Journal , 10 (18).

Peng, C.-Y. J. and So, T.-S. H. (2002). Logistic regression analysis and reporting: A primer.

Understanding Statistics: Statistical Issues in Psychology, Education, and the Social Sci-

ences, 1, 31–70.

Pratt, C. W., Voet, D., and Voet, J. G. (2005). Fundamentals of Biochemistry: Life at the

Molecular level. John Wiley & Sons, New York.

R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing.

Raileanu, L. E. and Stoffel, K. (2004). Theoretical comparison between the Gini index and

information gain criteria. Annals of Mathematics and Artificial Intelligence, 41 (1), 77–93.

Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-Validation. In L. Liu and M. T. Özsu

(Eds.), Encyclopedia of Database Systems, 532–538. Springer US.

Richards, F. M. and Kundrot, C. E. (1988). Identification of structural motifs from protein

coordinate data: Secondary structure and first-level supersecondary structure. Proteins:

Structure, Function, and Bioinformatics, 3 (2), 71–84.

Riis, S. K. and Krogh, A. (1996). Improving prediction of protein secondary structure using

structured neural networks and multiple sequence alignments. Journal of Computational

Biology , 3, 163–183.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press.

Ross. J, Q. (1986). Induction of decision trees. Machine Learning , 1 (1), 81–106.

Rost, B. and Sander, C. (1993). Prediction of protein secondary structure at better than 70%

accuracy. Journal of Molecular Biology , 232 (2), 584–599.

Bibliography 82

Sammut, C. and Webb, G. I. (2011). Encyclopedia of Machine Learning. Springer.

Sheen, S. and Anitha, R. (2012). A Novel Node Splitting Criteria for Decision Trees Based

on Theil Index. In T. Huang, Z. Zeng, C. Li, and C. Leung (Eds.), Neural Information

Processing, Volume 7664 of Lecture Notes in Computer Science, 435–443. Springer Berlin

Heidelberg.

Singh, M., Sandhu, P. S., and Kaur, R. K. (2008). Protein secondary structure prediction.

World Academy of Science, Engineering and Technology , 42, 458–461.

Strobl, C., Boulesteix, A.-L., and Augustin, T. (2007). Unbiased split selection for classification

trees based on the Gini index. Computational Statistics & Data Analysis, 52 (1), 483–501.

Therneau, T. M., Atkinson, E. J., and Foundation, M. (2014). An introduction to recursive

partitioning using the RPART routines. R package version 4.1-8.

Therneau, T. M., Atkinson, E. J., and Mayo, F. (1997). Technical Report 61: An introduction

to recursive partitioning using the RPART routines. Section of Biostatistics, Mayo Clinic,

Rochester.

Timofeev, R. (2004). Classification and Regression Trees (CART): Theory and Applications.

Master’s thesis, Humboldt University, Berlin.

Tsilo, L. C. (2009). Protein Secondary Structure Prediction using Neural Networks and Support

Vector Machines. Master’s thesis, Rhodes University.

Whitford, D. (2005). Proteins: Structure and Function. John Wiley & Sons.

Yohannes, Y. and Webb, P. (1999). Classification and Regression Trees, (CART): a User

Manual for Identifying Indicators of Vulnerability to Famine and Chronic Food Insecurity,

Volume 3. International Food Policy Research Institute.

Yüksektepe, F. Ü., Yılmaz, Ö., and Türkay, M. (2008). Prediction of secondary structures of

proteins using a two-stage method. Computers & Chemical Engineering , 32, 78–88.

Zaki, M. J. and Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and

Algorithms. Cambridge University Press.

Zhang, Y. and Rajapakse, J. C. (2009). Machine Learning in Bioinformatics, Volume 4. John

Wiley & Sons.

Zhu, X. (2010). CS769 Spring 2010 Advanced Natural Language Processing: Naive Bayes

Classifier. http://pages.cs.wisc.edu/~jerryzhu/cs769.html. Accessed: 2015-07-02.

Appendix A

Classification Trees: Hold-Out Cross

Validation

1 l i b r a r y (rpa r t)

2 r s126_data_window_3 <− read . delim ("C: /temp/Data/Binary Excel Data/ r s126_data_

window_3 . txt ")

3 gdata_3 <− r s126_data_window_3

4 gdata_3<− data . frame (gdata_3 [, 1 : 6 6])

5 xdata_3<− data . frame (gdata_3 [, 4 : 6 6])

6 names (gdata_3) [3] <− "ydata_3"

7 ydata_3 <− as . f a c t o r (gdata_3 [, 3])

8 car tdata_3<−data . frame (ydata_3 , xdata_3)

9 ### randomize the data

10 s e t . seed (999)

11 car tdata_3 <− data . frame (ydata_3 , xdata_3)

12 t r a in Index_3 <− c r ea teDataPar t i t i on (car tdata_3$ydata_3 , p=0.50 , l i s t=FALSE)

13 car tdata . t r a i n i ng_3 <− car tdata_3 [t r a in Index_3 ,]

14 car tdata . t e s t i n g_3 <− car tdata_3[− t r a in Index_3 ,]

15 ### f i t t i n g the maximum tr e e on t r a i n i ng data s e t f o r windows s i z e 3 us ing

16 ### the rpa r t func t i on from rpa r t package

17 t r a i n i ng . o r thogona l . r pa r t_3 <− rpa r t (ydata_3 ~ . , ca r tdata . t r a i n i ng_3 , method="

c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

18 summary(t r a i n i ng . o r thogona l . r pa r t_3)

19 ### p l o t t i n g the maximum tr e e

20 p lo t (t r a i n i ng . o r thogona l . r pa r t_3 , uniform = TRUE, margin =.1 ,main = "Using f i v e

f o l d c r o s s f i r s t f o l d va l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e f o r

pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

21 t ex t (t r a i n i ng . o r thogona l . r pa r t_3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.6)

22 ### pr ed i c t i o n c l a s s

23 pred . c l a s s_3<− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t_3 , newdata = cartdata . t e s t i n g_

3 , type = " c l a s s ")

24 ### Res idua l t r e e

83

Appendix A: Classification Trees: Hold-Out Cross Validation 84

25 r e s i d_3<− r e s i d u a l s (t r a i n i ng . o r thogona l . r pa r t_3)

26 ### Cost complexity omplexity

27 plotcp (t r a i n i ng . o r thogona l . r pa r t_3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s p l i t s " , main = "Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

28 plotcp (t r a i n i ng . o r thogona l . r pa r t_3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s i z e " , main = "Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in secondary

s t r u c t i o n data s i z e 126 windows 3")

29 cp . t r a i n i ng_s e t . 3_rpa r t <− pr in tcp (t r a i n i ng . o r thogona l . r pa r t_3 , d i g i t s =

getOption (" d i g i t s ") − 2)

30 ### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

31 cp . cho i c e . s e t_3 <− t r a i n i ng . o r thogona l . r pa r t_3$ cptab l e [which . min (t r a i n i ng .

o r thogona l . r pa r t_3$ cptab l e [, " xe r r o r "]) , "CP"]

32 prune . t r a i n i ng . rpa r t_3 <− prune (t r a i n i ng . o r thogona l . r pa r t_3 , cp = cp . cho i c e . s e t_

3)

33 summary(t r a i n i ng . o r thogona l . r pa r t_3)

34 p lo t (t r a i n i ng . o r thogona l . r pa r t_3 , uniform = TRUE, main = " Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

35 t ex t (t r a i n i ng . o r thogona l . r pa r t_3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.8)

36 t h e p r e d i c t e d c l a s s . t e s tda ta_3 <− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t_3 , newdata =

cartdata . t e s t i n g_3 , type=" c l a s s ")

37 l i b r a r y (ca r e t)

38 ydata . t e s t i n g_3 <− car tdata . t e s t i n g_3 [, 1]

39 t e s tda t a c on fu s i o n_w3_f o l d_3 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s . t e s tda ta

_3 , r e f e r e n c e= ydata . t e s t i n g_3)

40 ### te s t i n g

41 ### f i t t i n g the maximum tr e e on t e s t i n g data s e t f o r windows s i z e 3 us ing rpa r t

42 ### func t i on from rpa r t package

43 t e s t i n g . o r thogona l . r pa r t_3 <− rpa r t (ydata_3 ~ . , ca r tdata . t e s t i n g_3 , method="

c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

44 summary(t e s t i n g . o r thogona l . r pa r t_3)

45 ### p l o t t i n g the maximum tr e e

46 p lo t (t e s t i n g . o r thogona l . r pa r t_3 , uniform = TRUE, margin =.1 , main = "Using hold

out c r o s s v a l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

47 t ex t (t e s t i n g . o r thogona l . r pa r t_3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy

= FALSE, minlength = 4L , cex =0.6)

48 ### pr ed i c t i o n c l a s s

49 pred . c l a s s t_3 <− p r ed i c t (t e s t i n g . o r thogona l . r pa r t_3 , newdata = cartdata . t r a i n i ng

_3 , type = " c l a s s ")

50 ### Res idua l t r e e

51 r e s i d t_3 <− r e s i d u a l s (t e s t i n g . o r thogona l . r pa r t_3)

52 ### Cost complexity omplexity

53 plotcp (t e s t i n g . o r thogona l . r pa r t_3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s p l i t s " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

85 Appendix A: Classification Trees: Hold-Out Cross Validation

54 plotcp (t e s t i n g . o r thogona l . r pa r t_3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s i z e " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

55 cp . t e s t i n g_s e t . 3_rpa r t <− pr in tcp (t e s t i n g . o r thogona l . r pa r t_3 , d i g i t s = getOption

(" d i g i t s ") − 2)

56 ### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

57 cp . cho i c e . s e t t_3 <− t e s t i n g . o r thogona l . r pa r t_3$ cptab l e [which . min (t e s t i n g .

o r thogona l . r pa r t_3$ cptab l e [, " xe r r o r "]) , "CP"]

58 prune . t e s t i n g . rpa r t_3 <− prune (t e s t i n g . o r thogona l . r pa r t_3 , cp = cp . cho i c e . s e t t_

3)

59 summary(t e s t i n g . o r thogona l . r pa r t_3)

60 p lo t (t e s t i n g . o r thogona l . r pa r t_3 , uniform = TRUE, main = " Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

61 t ex t (t e s t i n g . o r thogona l . r pa r t_3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy

= FALSE, minlength = 4L , cex =0.8)

62 t h e p r e d i c t e d c l a s s . t r a inda ta_3 <− p r ed i c t (t e s t i n g . o r thogona l . r pa r t_3 , newdata =

cartdata . t r a i n i ng_3 , type=" c l a s s ")

63 l i b r a r y (ca r e t)

64 ydata . t r a i n i ng_3 <− car tdata . t r a i n i ng_3 [, 1]

65 t r a i nda ta c on fu s i on_w3_f o l d_3 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s .

t r a inda ta_3 , r e f e r e n c e= ydata . t r a i n i ng_3)

66 accuracy .w3 . hold . out <− c (t e s tda t a c on fu s i o n_w3_f o l d_3$ o v e r a l l [1] ,

t r a i nda ta c on fu s i on_w3_f o l d_3$ o v e r a l l [1])

67 accuracy .w3 <− mean(accuracy .w3 . hold . out)

Listing A.1: Classification Trees: Hold-Out Cross Validation

Appendix A: Classification Trees: Hold-Out Cross Validation 86

Appendix B

Classification Trees: 5-fold Cross

Validation

1 l i b r a r y (rpa r t)

2 gdata <− read . delim ("C: /temp/Data/Binary Excel Data/ r s126_data_window_3 . txt ")

3 gdata <− data . frame (gdata [, 1 : 6 6])

4 xdata <− data . frame (gdata [, 4 : 6 6])

5 ydata <− as . f a c t o r (gdata [, 3])

6 names (gdata) [3] <− "ydata "

7 car tdata<−data . frame (ydata , xdata)

8 ## randomize the data

9 s e t . seed (9999)

10 gdata <− sample (gdata)

11 gdata_sample <− sample (1 : 23348)

12 s e t . 1 <− gdata_sample [1 : 4 6 6 9]

13 s e t . 2 <− gdata_sample [4 6 7 0 : 9 3 3 8]

14 s e t . 3 <− gdata_sample [9 3 3 9 : 1 4 0 0 7]

15 s e t . 4 <− gdata_sample [1 4 0 0 8 : 1 86 76]

16 s e t . 5 <− gdata_sample [1 8 6 7 7 : 2 33 48]

17 ### Training and t e s t i n g data s e t f o r f i r s t f o l d o f windows s i z e 3

18 car tdata . t r a i n i ng .31 <− car tdata [− s e t . 1 ,]

19 car tdata . t e s t i n g . 31 <− car tdata [s e t . 1 ,]

20 ### f i t t i n g the maximum tr e e on t r a i n i ng data s e t f o r windows s i z e 3 us ing

rpa r t func t i on from rpa r t package

21 t r a i n i ng . o r thogona l . r pa r t . 3 1 <− rpa r t (ydata ~ . , ca r tdata . t r a i n i ng .31 , method="

c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

22 ### p l o t t i n g the maximum tr e e

23 p lo t (t r a i n i ng . o r thogona l . r pa r t . 3 1 , uniform = TRUE, margin =.1 , main = "Using f i v e

f o l d c r o s s f i r s t f o l d va l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e f o r

pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

24 t ex t (t r a i n i ng . o r thogona l . r pa r t . 3 1 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.6)

25 ### pr ed i c t i o n o f the c l a s s

87

Appendix B: Classification Trees: 5-fold Cross Validation 88

26 pred . c l a s s . 3 1 <− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t . 3 1 , newdata = cartdata .

t e s t i n g . 3 1 , type = " c l a s s ")

27 #### Res idua l t r e e

28 r e s i d . 31 <− r e s i d u a l s (t r a i n i ng . o r thogona l . r pa r t . 3 1)

29 ### Cost complexity omplexity

30 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 1 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s p l i t s " , main = "Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

31 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 1 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s i z e " , main = "Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

32 cp . t r a i n i ng_s e t . 11_rpa r t <− pr in tcp (t r a i n i ng . o r thogona l . r pa r t . 3 1 , d i g i t s =

getOption (" d i g i t s ") − 2)

33 ##### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

34 cp . cho i c e . s e t . 3 1<−t r a i n i ng . o r thogona l . r pa r t . 3 1 $ cptab l e [which . min (t r a i n i ng .

o r thogona l . r pa r t . 3 1 $ cptab l e [, " xe r r o r "]) , "CP"]

35 ######## pruning the maximum tr e e

36 prune . t r a i n i ng . rpa r t . 3 1 <− prune (t r a i n i ng . o r thogona l . r pa r t . 3 1 , cp = cp . cho i c e .

s e t . 3 1)

37 p lo t (prune . t r a i n i ng . rpa r t . 3 1 , uniform = TRUE, main = " Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

38 t ex t (prune . t r a i n i ng . rpa r t . 3 1 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy =

FALSE, minlength = 4L , cex =0.8)

39 t h e p r e d i c t e d c l a s s . t e s tda ta . 31 <− p r ed i c t (prune . t r a i n i ng . rpa r t . 3 1 , newdata =

cartdata . t e s t i n g . 3 1 , type=" c l a s s ")

40 ### Determine the accuracy

41 l i b r a r y (ca r e t)

42 ydata . t e s t i n g . 31 <− car tdata . t e s t i n g . 3 1 [s e t . 1 , 1]

43 t e s tda t a c on fu s i o n_w3_f o l d . 31 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s .

t e s tda ta . 3 1 , r e f e r e n c e= ydata . t e s t i n g . 3 1)

44

45 ### 2 f o l d

46 ### Training data s e t f o r windows s i z e 3

47 car tdata . t r a i n i ng .32 <− car tdata [− s e t . 2 ,]

48 car tdata . t e s t i n g . 32 <− car tdata [s e t . 2 ,]

49 ### f i t t i n g the maximum tr e e on t r a i n i ng data s e t f o r windows s i z e 3 us ing

rpa r t func t i on from rpa r t package

50 t r a i n i ng . o r thogona l . r pa r t . 3 2 <− rpa r t (ydata ~ . , ca r tdata . t r a i n i ng .32 , method=

" c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

51 ### p l o t t i n g the maximum tr e e

52 p lo t (t r a i n i ng . o r thogona l . r pa r t . 3 2 , uniform = TRUE, margin =.1 ,main = "Using f i v e

f o l d c r o s s f i r s t f o l d va l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e f o r

pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

53 t ex t (t r a i n i ng . o r thogona l . r pa r t . 3 2 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.6)

54 ### pr ed i c t i o n c l a s s

89 Appendix B: Classification Trees: 5-fold Cross Validation

55 pred . c l a s s . 3 2 <− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t . 3 2 , newdata = cartdata .

t e s t i n g . 3 2 , type = " c l a s s ")

56 #### Res idua l t r e e

57 r e s i d . 32 <− r e s i d u a l s (t r a i n i ng . o r thogona l . r pa r t . 3 2)

58 ### Cost complexity omplexity

59 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 2 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s p l i t s " , main = "Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

60 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 2 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s i z e " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

61 cp . t r a i n i ng_s e t . 32_rpa r t <− pr in tcp (t r a i n i ng . o r thogona l . r pa r t . 3 2 , d i g i t s =

getOption (" d i g i t s ") − 2)

62 ##### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

63 cp . cho i c e . s e t . 3 2 <− t r a i n i ng . o r thogona l . r pa r t . 3 2 $ cptab l e [which . min(t r a i n i ng .

o r thogona l . r pa r t . 3 2 $ cptab l e [, " xe r r o r "]) , "CP"]

64 ######## Pruning the t r e e

65 prune . t r a i n i ng . rpa r t . 3 2 <− prune (t r a i n i ng . o r thogona l . r pa r t . 3 2 , cp = cp . cho i c e .

s e t . 3 1)

66 p lo t (prune . t r a i n i ng . rpa r t . 3 2 , uniform = TRUE, main = " Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

67 t ex t (prune . t r a i n i ng . rpa r t . 3 2 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy =

FALSE, minlength = 4L , cex =0.8)

68 t h e p r e d i c t e d c l a s s . t e s tda ta . 32 <− p r ed i c t (prune . t r a i n i ng . rpa r t . 3 2 , newdata =

cartdata . t e s t i n g . 3 2 , type=" c l a s s ")

69 ######## Determine the accuracy

70 l i b r a r y (ca r e t)

71 ydata . t e s t i n g . 32 <− car tdata . t e s t i n g . 3 2 [s e t . 2 , 1]

72 t e s tda t a c on fu s i o n_w3_f o l d . 32 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s .

t e s tda ta . 3 2 , r e f e r e n c e= ydata . t e s t i n g . 3 2)

73

74 ### 3 f o l d s

75 ### Training data s e t f o r windows s i z e 3

76 car tdata . t r a i n i ng .33 <− car tdata [− s e t . 3 ,]

77 car tdata . t e s t i n g . 33 <− car tdata [s e t . 3 ,]

78 ### f i t t i n g the maximum tr e e on t r a i n i ng data s e t f o r windows s i z e 3 us ing

rpa r t func t i on from rpa r t package

79 t r a i n i ng . o r thogona l . r pa r t . 3 3 <− rpa r t (ydata ~ . , ca r tdata . t r a i n i ng .33 , method="

c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

80 ### p l o t t i n g the maximum tr e e

81 p lo t (t r a i n i ng . o r thogona l . r pa r t . 3 3 , uniform = TRUE, margin =.1 , main = "Using f i v e

f o l d c r o s s f i r s t f o l d va l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e f o r

pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

82 t ex t (t r a i n i ng . o r thogona l . r pa r t . 3 3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.6)

83 ### pr ed i c t i o n

Appendix B: Classification Trees: 5-fold Cross Validation 90

84 pred . c l a s s . 3 3 <− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t . 3 3 , newdata = cartdata .

t e s t i n g . 33 , type = " c l a s s ")

85 #### Res idua l t r e e

86 r e s i d . 33 <− r e s i d u a l s (t r a i n i ng . o r thogona l . r pa r t . 3 3)

87 ### Cost complexity omplexity

88 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s p l i t s " , main = "Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

89 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s i z e " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

90 cp . t r a i n i ng_s e t . 33_rpa r t <− pr in tcp (t r a i n i ng . o r thogona l . r pa r t . 3 3 , d i g i t s =

getOption (" d i g i t s ") − 2)

91 ##### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

92 cp . cho i c e . s e t . 3 3 <− t r a i n i ng . o r thogona l . r pa r t . 3 3 $ cptab l e [which . min(t r a i n i ng .

o r thogona l . r pa r t . 3 3 $ cptab l e [, " xe r r o r "]) , "CP"]

93 ######## Puning t r e e

94 prune . t r a i n i ng . rpa r t . 3 3 <− prune (t r a i n i ng . o r thogona l . r pa r t . 3 3 , cp = cp . cho i c e .

s e t . 3 1)

95 p lo t (prune . t r a i n i ng . rpa r t . 3 3 , uniform = TRUE, main = " Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

96 t ex t (prune . t r a i n i ng . rpa r t . 3 3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy =

FALSE, minlength = 4L , cex =0.8)

97 t h e p r e d i c t e d c l a s s . t e s tda ta . 33 <− p r ed i c t (prune . t r a i n i ng . rpa r t . 3 3 , newdata =

cartdata . t e s t i n g . 3 3 , type=" c l a s s ")

98 ######## Determine the accuracy

99 l i b r a r y (ca r e t)

100 ydata . t e s t i n g . 33 <− car tdata . t e s t i n g . 3 3 [s e t . 3 , 1]

101 t e s tda t a c on fu s i o n_w3_f o l d . 33 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s .

t e s tda ta . 3 3 , r e f e r e n c e= ydata . t e s t i n g . 3 3)

102

103 ### 4 f o l d s

104 ### Training data s e t f o r windows s i z e 3

105 car tdata . t r a i n i ng .34 <− car tdata [− s e t . 4 ,]

106 car tdata . t e s t i n g . 34 <− car tdata [s e t . 4 ,]

107 ### f i t t i n g the maximum tr e e on t r a i n i ng data s e t f o r windows s i z e 3 us ing

rpa r t func t i on from rpa r t package

108 t r a i n i ng . o r thogona l . r pa r t . 3 4 <− rpa r t (ydata ~ . , ca r tdata . t r a i n i ng .34 , method="

c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

109 ### p l o t t i n g the maximum tr e e

110 p lo t (t r a i n i ng . o r thogona l . r pa r t . 3 4 , uniform = TRUE, margin =.1 , main = "Using

f i v e f o l d c r o s s f i r s t f o l d va l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e

f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

111 t ex t (t r a i n i ng . o r thogona l . r pa r t . 3 4 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.6)

112 ### pr ed i c t i o n c l a s s

91 Appendix B: Classification Trees: 5-fold Cross Validation

113 pred . c l a s s . 3 4 <− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t . 3 4 , newdata = cartdata .

t e s t i n g . 3 4 , type = " c l a s s ")

114 #### Res idua l t r e e

115 r e s i d . 34 <− r e s i d u a l s (t r a i n i ng . o r thogona l . r pa r t . 3 4)

116 ### Cost complexity omplexity

117 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 4 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s p l i t s " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

118 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 4 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s i z e " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

119 cp . t r a i n i ng_s e t . 34_rpa r t <− pr in tcp (t r a i n i ng . o r thogona l . r pa r t . 3 4 , d i g i t s =

getOption (" d i g i t s ") − 2)

120 ##### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

121 cp . cho i c e . s e t . 3 4 <− t r a i n i ng . o r thogona l . r pa r t . 3 4 $ cptab l e [which . min(t r a i n i ng .

o r thogona l . r pa r t . 3 4 $ cptab l e [, " xe r r o r "]) , "CP"]

122 ########pruning the t r e e

123 prune . t r a i n i ng . rpa r t . 3 4 <− prune (t r a i n i ng . o r thogona l . r pa r t . 3 4 , cp = cp . cho i c e .

s e t . 3 1)

124 p lo t (prune . t r a i n i ng . rpa r t . 3 4 , uniform = TRUE, main = "Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

125 t ex t (prune . t r a i n i ng . rpa r t . 3 4 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy =

FALSE, minlength = 4L , cex =0.8)

126 t h e p r e d i c t e d c l a s s . t e s tda ta . 34 <− p r ed i c t (prune . t r a i n i ng . rpa r t . 3 4 , newdata =

cartdata . t e s t i n g . 3 4 , type=" c l a s s ")

127 ######## Determine the accuracy

128 l i b r a r y (ca r e t)

129 ydata . t e s t i n g . 34 <− car tdata . t e s t i n g . 3 4 [s e t . 4 , 1]

130 t e s tda t a c on fu s i o n_w3_f o l d . 34 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s .

t e s tda ta . 3 4 , r e f e r e n c e= ydata . t e s t i n g . 3 4)

131

132 ###

133 ### 5 f o l d s

134 ### Training data s e t f o r windows s i z e 3

135 car tdata . t r a i n i ng .35 <− car tdata [− s e t . 5 ,]

136 car tdata . t e s t i n g . 35 <− car tdata [s e t . 5 ,]

137 t r a i n i ng . o r thogona l . r pa r t . 3 5 <− rpa r t (ydata ~ . , ca r tdata . t r a i n i ng .35 , method="

c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

138 ### p l o t t i n g the maximum tr e e

139 p lo t (t r a i n i ng . o r thogona l . r pa r t . 3 5 , uniform = TRUE, margin =.1 , main = "Using f i v e

f o l d c r o s s f i r s t f o l d va l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e f o r

pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

140 t ex t (t r a i n i ng . o r thogona l . r pa r t . 3 5 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.6)

141 ### pr ed i c t i o n

142 pred . c l a s s . 3 5 <− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t . 3 5 , newdata = cartdata .

t e s t i n g . 3 5 , type = " c l a s s ")

Appendix B: Classification Trees: 5-fold Cross Validation 92

143 #### Res idua l t r e e

144 r e s i d . 35 <− r e s i d u a l s (t r a i n i ng . o r thogona l . r pa r t . 3 5)

145 ### Cost complexity omplexity

146 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 5 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s p l i t s " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

147 plotcp (t r a i n i ng . o r thogona l . r pa r t . 3 5 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper =

" s i z e " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

148 cp . t r a i n i ng_s e t . 35_rpa r t <− pr in tcp (t r a i n i ng . o r thogona l . r pa r t . 3 5 , d i g i t s =

getOption (" d i g i t s ") − 2)

149 ##### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

150 cp . cho i c e . s e t . 3 5 <− t r a i n i ng . o r thogona l . r pa r t . 3 5 $ cptab l e [which . min(t r a i n i ng .

o r thogona l . r pa r t . 3 5 $ cptab l e [, " xe r r o r "]) , "CP"]

151 ######## pruning the t r e e

152 prune . t r a i n i ng . rpa r t . 3 5 <− prune (t r a i n i ng . o r thogona l . r pa r t . 3 5 , cp = cp . cho i c e .

s e t . 3 1)

153 summary(prune . t r a i n i ng . rpa r t . 3 5)

154 p lo t (prune . t r a i n i ng . rpa r t . 3 5 , uniform = TRUE, main = " Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

155 t ex t (prune . t r a i n i ng . rpa r t . 3 5 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy =

FALSE, minlength = 4L , cex =0.8)

156 t h e p r e d i c t e d c l a s s . t e s tda ta . 35 <− p r ed i c t (prune . t r a i n i ng . rpa r t . 3 5 , newdata =

cartdata . t e s t i n g . 3 5 , type=" c l a s s ")

157 l i b r a r y (ca r e t)

158 ydata . t e s t i n g . 35 <− car tdata . t e s t i n g . 3 5 [s e t . 5 , 1]

159 t e s tda t a c on fu s i o n_w3_f o l d . 35 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s .

t e s tda ta . 3 5 , r e f e r e n c e= ydata . t e s t i n g . 3 5)

160 t e s tda t a c on fu s i o n_w3 <− data . frame (t e s tda t a c on fu s i o n_w3_f o l d . 31 $ ov e r a l l ,

t e s tda t a c on fu s i o n_w3_f o l d . 32 $ ov e r a l l , t e s tda t a c on fu s i o n_w3_f o l d . 33 $ ov e r a l l ,

t e s tda t a c on fu s i o n_w3_f o l d . 34 $ ov e r a l l , t e s tda t a c on fu s i o n_w3_f o l d . 35 $ o v e r a l l)

161 bCla s s t e s tda ta con fu s i on_w3 <− data . frame (t e s tda t a c on fu s i o n_w3_f o l d . 31 $byClass ,

t e s tda t a c on fu s i o n_w3_f o l d . 32 $byClass , t e s tda t a c on fu s i o n_w3_f o l d . 33 $byClass ,

t e s tda t a c on fu s i o n_w3_f o l d . 34 $byClass , t e s tda t a c on fu s i o n_w3_f o l d . 35 $ byClass)

162 accuracy_windows_3 <− c (t e s tda t a c on fu s i o n_w3_f o l d . 31 $ o v e r a l l [1] ,

t e s tda t a c on fu s i o n_w3_f o l d . 32 $ o v e r a l l [1] , t e s tda t a c on fu s i o n_w3_f o l d . 33 $ o v e r a l l

[1] , t e s tda t a c on fu s i o n_w3_f o l d . 34 $ o v e r a l l [1] , t e s tda t a c on fu s i o n_w3_f o l d . 35 $

o v e r a l l [1])

163 Accuracy_3 <− mean(accuracy_windows_3)

164 Accuracy_3

Listing B.1: Classification Trees: 5-fold Cross Validation

Appendix C

Naive Bayes: Hold-Out Cross Validation

1 l i b r a r y (rpa r t)

2 r s126_data_window_3 <− read . delim ("C: /temp/Data/Binary Excel Data/ r s126_data_

window_3 . txt ")

3 gdata_3 <− r s126_data_window_3

4 gdata_3<− data . frame (gdata_3 [, 1 : 6 6])

5 xdata_3<− data . frame (gdata_3 [, 4 : 6 6])

6 names (gdata_3) [3] <− "ydata_3"

7 ydata_3 <− as . f a c t o r (gdata_3 [, 3])

8 car tdata_3<−data . frame (ydata_3 , xdata_3)

9 ### randomize the data

10 s e t . seed (999)

11 car tdata_3 <− data . frame (ydata_3 , xdata_3)

12 t r a in Index_3 <− c r ea teDataPar t i t i on (car tdata_3$ydata_3 , p=0.50 , l i s t=FALSE)

13 car tdata . t r a i n i ng_3 <− car tdata_3 [t r a in Index_3 ,]

14 car tdata . t e s t i n g_3 <− car tdata_3[− t r a in Index_3 ,]

15 ### f i t t i n g the maximum tr e e on t r a i n i ng data s e t f o r windows s i z e 3 us ing

16 ### the rpa r t func t i on from rpa r t package

17 t r a i n i ng . o r thogona l . r pa r t_3 <− rpa r t (ydata_3 ~ . , ca r tdata . t r a i n i ng_3 , method="

c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

18 summary(t r a i n i ng . o r thogona l . r pa r t_3)

19 ### p l o t t i n g the maximum tr e e

20 p lo t (t r a i n i ng . o r thogona l . r pa r t_3 , uniform = TRUE, margin =.1 ,main = "Using f i v e

f o l d c r o s s f i r s t f o l d va l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e f o r

pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

21 t ex t (t r a i n i ng . o r thogona l . r pa r t_3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.6)

22 ### pr ed i c t i o n c l a s s

23 pred . c l a s s_3<− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t_3 , newdata = cartdata . t e s t i n g_

3 , type = " c l a s s ")

24 ### Res idua l t r e e

25 r e s i d_3<− r e s i d u a l s (t r a i n i ng . o r thogona l . r pa r t_3)

26 ### Cost complexity omplexity

93

Appendix C: Naive Bayes: Hold-Out Cross Validation 94

27 plotcp (t r a i n i ng . o r thogona l . r pa r t_3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s p l i t s " , main = "Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

28 plotcp (t r a i n i ng . o r thogona l . r pa r t_3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s i z e " , main = "Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in secondary

s t r u c t i o n data s i z e 126 windows 3")

29 cp . t r a i n i ng_s e t . 3_rpa r t <− pr in tcp (t r a i n i ng . o r thogona l . r pa r t_3 , d i g i t s =

getOption (" d i g i t s ") − 2)

30 ### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

31 cp . cho i c e . s e t_3 <− t r a i n i ng . o r thogona l . r pa r t_3$ cptab l e [which . min (t r a i n i ng .

o r thogona l . r pa r t_3$ cptab l e [, " xe r r o r "]) , "CP"]

32 prune . t r a i n i ng . rpa r t_3 <− prune (t r a i n i ng . o r thogona l . r pa r t_3 , cp = cp . cho i c e . s e t_

3)

33 summary(t r a i n i ng . o r thogona l . r pa r t_3)

34 p lo t (t r a i n i ng . o r thogona l . r pa r t_3 , uniform = TRUE, main = " Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

35 t ex t (t r a i n i ng . o r thogona l . r pa r t_3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE,

fancy = FALSE, minlength = 4L , cex =0.8)

36 t h e p r e d i c t e d c l a s s . t e s tda ta_3 <− p r ed i c t (t r a i n i ng . o r thogona l . r pa r t_3 , newdata =

cartdata . t e s t i n g_3 , type=" c l a s s ")

37 l i b r a r y (ca r e t)

38 ydata . t e s t i n g_3 <− car tdata . t e s t i n g_3 [, 1]

39 t e s tda t a c on fu s i o n_w3_f o l d_3 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s . t e s tda ta

_3 , r e f e r e n c e= ydata . t e s t i n g_3)

40 ### te s t i n g

41 ### f i t t i n g the maximum tr e e on t e s t i n g data s e t f o r windows s i z e 3 us ing rpa r t

42 ### func t i on from rpa r t package

43 t e s t i n g . o r thogona l . r pa r t_3 <− rpa r t (ydata_3 ~ . , ca r tdata . t e s t i n g_3 , method="

c l a s s " , c on t r o l=rpa r t . c o n t r o l (cp = 0 .001))

44 summary(t e s t i n g . o r thogona l . r pa r t_3)

45 ### p l o t t i n g the maximum tr e e

46 p lo t (t e s t i n g . o r thogona l . r pa r t_3 , uniform = TRUE, margin =.1 , main = "Using hold

out c r o s s v a l i d a t i o n to growing maximum C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

47 t ex t (t e s t i n g . o r thogona l . r pa r t_3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy

= FALSE, minlength = 4L , cex =0.6)

48 ### pr ed i c t i o n c l a s s

49 pred . c l a s s t_3 <− p r ed i c t (t e s t i n g . o r thogona l . r pa r t_3 , newdata = cartdata . t r a i n i ng

_3 , type = " c l a s s ")

50 ### Res idua l t r e e

51 r e s i d t_3 <− r e s i d u a l s (t e s t i n g . o r thogona l . r pa r t_3)

52 ### Cost complexity omplexity

53 plotcp (t e s t i n g . o r thogona l . r pa r t_3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s p l i t s " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

secondary s t r u c t i o n data s i z e 126 windows 3")

54 plotcp (t e s t i n g . o r thogona l . r pa r t_3 , min l ine = TRUE, l t y = 3 , c o l = 1 , upper = "

s i z e " , main = " Cost complexity f o r C l a s s i f i c a t i o n t r e e f o r pro te in

95 Appendix C: Naive Bayes: Hold-Out Cross Validation

secondary s t r u c t i o n data s i z e 126 windows 3")

55 cp . t e s t i n g_s e t . 3_rpa r t <− pr in tcp (t e s t i n g . o r thogona l . r pa r t_3 , d i g i t s = getOption

(" d i g i t s ") − 2)

56 ### lo c a t i o n o f minimum cos t complexity cros s−va l i d a t i o n e r r o r

57 cp . cho i c e . s e t t_3 <− t e s t i n g . o r thogona l . r pa r t_3$ cptab l e [which . min (t e s t i n g .

o r thogona l . r pa r t_3$ cptab l e [, " xe r r o r "]) , "CP"]

58 prune . t e s t i n g . rpa r t_3 <− prune (t e s t i n g . o r thogona l . r pa r t_3 , cp = cp . cho i c e . s e t t_

3)

59 summary(t e s t i n g . o r thogona l . r pa r t_3)

60 p lo t (t e s t i n g . o r thogona l . r pa r t_3 , uniform = TRUE, main = " Pruning maximum

C l a s s i f i c a t i o n t r e e f o r pro te in secondary s t r u c t i o n data s i z e 126 windows 3")

61 t ex t (t e s t i n g . o r thogona l . r pa r t_3 , s p l i t s = TRUE, use . n = TRUE, a l l = FALSE, fancy

= FALSE, minlength = 4L , cex =0.8)

62 t h e p r e d i c t e d c l a s s . t r a inda ta_3 <− p r ed i c t (t e s t i n g . o r thogona l . r pa r t_3 , newdata =

cartdata . t r a i n i ng_3 , type=" c l a s s ")

63 l i b r a r y (ca r e t)

64 ydata . t r a i n i ng_3 <− car tdata . t r a i n i ng_3 [, 1]

65 t r a i nda ta c on fu s i on_w3_f o l d_3 <− confus ionMatr ix (data = th e p r e d i c t e d c l a s s .

t r a inda ta_3 , r e f e r e n c e= ydata . t r a i n i ng_3)

66 accuracy .w3 . hold . out <− c (t e s tda t a c on fu s i o n_w3_f o l d_3$ o v e r a l l [1] ,

t r a i nda ta c on fu s i on_w3_f o l d_3$ o v e r a l l [1])

67 accuracy .w3 <− mean(accuracy .w3 . hold . out)

Listing C.1: Naive Bayes: Hold-Out Cross Validation

Appendix C: Naive Bayes: Hold-Out Cross Validation 96

Appendix D

Naive Bayes: 5-fold Cross Validation

1 l i b r a r y (c l a s s)

2 l i b r a r y (e1071)

3 l i b r a r y (ca r e t)

4 l i b r a r y (rpa r t)

5 r s126_data_window_3 <− read . delim ("C: /temp/Data/Binary Excel Data/ r s126_data_

window_3 . txt ")

6 gdata_3 <− r s126_data_window_3

7 gdata_3 <− data . frame (gdata_3 [, 1 : 6 6])

8 xdata_3 <− data . frame (gdata_3 [, 4 : 6 6])

9 names (gdata_3) [3] <− "ydata_3"

10 ydata_3 <− as . f a c t o r (gdata_3 [, 3])

11 car tdata_3 <− data . frame (ydata_3 , xdata_3)

12 ### Training and t e s t i n g data s e t f o r windows s i z e_31

13 s e t . seed (22)

14 gdata_3 <− sample (gdata_3)

15 gdata_sample <− sample (1 : 23348)

16 s e t . 1 <− gdata_sample [1 : 4 6 6 9]

17 s e t . 2 <− gdata_sample [4 6 7 0 : 9 3 3 8]

18 s e t . 3 <− gdata_sample [9 3 3 9 : 1 4 0 0 7]

19 s e t . 4 <− gdata_sample [1 4 0 0 8 : 1 86 76]

20 s e t . 5 <− gdata_sample [1 8 6 7 7 : 2 33 48]

21 car tdata . t r a i n i ng_31 <− car tdata_3[− s e t . 1 ,]

22 car tdata . t e s t i n g_31 <− car tdata_3 [s e t . 1 ,]

23 c l a s s i f i e r . na ive ._31 <− naiveBayes (xdata_3 , ydata_3 , data = cartdata . t r a i n i ng_

31)

24 p r ed i c t . c l a s s i f i e r . na ive ._31<− p r ed i c t (c l a s s i f i e r . na ive ._31 , newdata=cartdata .

t e s t i n g_31)

25 ydata . t e s t i n g_31 <− car tdata . t e s t i n g_3 [s e t . 1 , 1]

26 l i b r a r y (ca r e t)

27 p r ed i c t . na ive_31 <− confus ionMatr ix (data = pr ed i c t . c l a s s i f i e r . na ive ._31 ,

r e f e r e n c e= ydata . t e s t i n g_31)

28 #### Accuracy

29 accuracy_31 <− p r ed i c t . na ive_31$ o v e r a l l [1]

97

Appendix D: Naive Bayes: 5-fold Cross Validation 98

30 Kappa_31 <− p r ed i c t . na ive_31$ o v e r a l l [2]

31 AccuracyLower_31 <− p r ed i c t . na ive_31$ o v e r a l l [3]

32 AccuracyUpper_31 <− p r ed i c t . na ive_31$ o v e r a l l [4]

33 AccuracyNull_31 <− p r ed i c t . na ive_31$ o v e r a l l [5]

34 AccuracyPValue_31 <− p r ed i c t . na ive_31$ o v e r a l l [6]

35 McnemarPValue_31 <− p r ed i c t . na ive_31$ o v e r a l l [7]

36 s e n s i t i v i t y_31 <−p r ed i c t . na ive_31$ byClass [1]

37 S p e c i f i c i t y_31 <− p r ed i c t . na ive_31$byClass [2]

38 Pos_Pred_Value_31 <− p r ed i c t . na ive_31$ byClass [3]

39

40 ### Second f o l d

41 car tdata . t r a i n i ng_32 <− car tdata_3[− s e t . 2 ,]

42 car tdata . t e s t i n g_32 <− car tdata_3 [s e t . 2 ,]

43 c l a s s i f i e r . na ive ._32 <− naiveBayes (xdata_3 , ydata_3 , data = cartdata . t r a i n i ng_

32)

44 p r ed i c t . c l a s s i f i e r . na ive ._32 <− p r ed i c t (c l a s s i f i e r . na ive ._32 , newdata=cartdata .

t e s t i n g_32)

45 ydata . t e s t i n g_32 <− car tdata . t e s t i n g_32 [s e t . 2 , 1]

46 l i b r a r y (ca r e t)

47 p r ed i c t . na ive_32<− confus ionMatr ix (data = pr ed i c t . c l a s s i f i e r . na ive ._32 ,

r e f e r e n c e= ydata . t e s t i n g_32)

48 #### Accuracy

49 accuracy_32 <− p r ed i c t . na ive_32$ o v e r a l l [1]

50 Kappa_32 <− p r ed i c t . na ive_32$ o v e r a l l [2]

51 AccuracyLower_32 <− p r ed i c t . na ive_32$ o v e r a l l [3]

52 AccuracyUpper_32 <− p r ed i c t . na ive_32$ o v e r a l l [4]

53 AccuracyNull_32 <− p r ed i c t . na ive_32$ o v e r a l l [5]

54 AccuracyPValue_32 <− p r ed i c t . na ive_32$ o v e r a l l [6]

55 McnemarPValue_32 <− p r ed i c t . na ive_32$ o v e r a l l [7]

56 s e n s i t i v i t y_32 <−p r ed i c t . na ive_32$ byClass [1]

57 S p e c i f i c i t y_32 <− p r ed i c t . na ive_32$byClass [2]

58 Pos_Pred_Value_32 <− p r ed i c t . na ive_32$ byClass [3]

59

60 ### Third Fold

61 car tdata . t r a i n i ng_33 <− car tdata_3[− s e t . 3 ,]

62 car tdata . t e s t i n g_33 <− car tdata_3 [s e t . 3 ,]

63 c l a s s i f i e r . na ive ._33 <− naiveBayes (xdata_3 , ydata_3 , data = cartdata . t r a i n i ng_

33)

64 p r ed i c t . c l a s s i f i e r . na ive ._33 <− p r ed i c t (c l a s s i f i e r . na ive ._33 , newdata=cartdata .

t e s t i n g_33)

65 ydata . t e s t i n g_33 <− car tdata . t e s t i n g_3 [s e t . 3 , 1]

66 l i b r a r y (ca r e t)

67 p r ed i c t . na ive_33 <− confus ionMatr ix (data = pr ed i c t . c l a s s i f i e r . na ive ._33 ,

r e f e r e n c e= ydata . t e s t i n g_33)

68 #### Accuracy

69 accuracy_33 <− p r ed i c t . na ive_33$ o v e r a l l [1]

70 Kappa_33 <− p r ed i c t . na ive_33$ o v e r a l l [2]

99 Appendix D: Naive Bayes: 5-fold Cross Validation

71 AccuracyLower_33 <− p r ed i c t . na ive_33$ o v e r a l l [3]

72 AccuracyUpper_33 <− p r ed i c t . na ive_33$ o v e r a l l [4]

73 AccuracyNull_33 <− p r ed i c t . na ive_33$ o v e r a l l [5]

74 AccuracyPValue_33 <− p r ed i c t . na ive_33$ o v e r a l l [6]

75 McnemarPValue_33 <− p r ed i c t . na ive_33$ o v e r a l l [7]

76 s e n s i t i v i t y_33 <−p r ed i c t . na ive_33$ byClass [1]

77 S p e c i f i c i t y_33 <− p r ed i c t . na ive_33$byClass [2]

78 Pos_Pred_Value_33 <− p r ed i c t . na ive_33$ byClass [3]

79

80 ### four th f o l d

81 car tdata . t r a i n i ng_34 <− car tdata_3[− s e t . 4 ,]

82 car tdata . t e s t i n g_34 <− car tdata_3 [s e t . 4 ,]

83 c l a s s i f i e r . na ive ._34 <− naiveBayes (xdata_3 , ydata_3 , data = cartdata . t r a i n i ng_

34)

84 p r ed i c t . c l a s s i f i e r . na ive ._34 <− p r ed i c t (c l a s s i f i e r . na ive ._34 , newdata=cartdata .

t e s t i n g_34)

85 ydata . t e s t i n g_34 <− car tdata . t e s t i n g_34 [s e t . 1 , 1]

86 l i b r a r y (ca r e t)

87 p r ed i c t . na ive_34 <− confus ionMatr ix (data = pr ed i c t . c l a s s i f i e r . na ive ._34 ,

r e f e r e n c e= ydata . t e s t i n g_34)

88 #### Accuracy

89 accuracy_34 <− p r ed i c t . na ive_34$ o v e r a l l [1]

90 Kappa_34 <− p r ed i c t . na ive_34$ o v e r a l l [2]

91 AccuracyLower_34 <− p r ed i c t . na ive_34$ o v e r a l l [3]

92 AccuracyUpper_34 <− p r ed i c t . na ive_34$ o v e r a l l [4]

93 AccuracyNull_34 <− p r ed i c t . na ive_34$ o v e r a l l [5]

94 AccuracyPValue_34 <− p r ed i c t . na ive_34$ o v e r a l l [6]

95 McnemarPValue_34 <− p r ed i c t . na ive_34$ o v e r a l l [7]

96 s e n s i t i v i t y_34 <−p r ed i c t . na ive_34$ byClass [1]

97 S p e c i f i c i t y_34 <− p r ed i c t . na ive_34$byClass [2]

98 Pos_Pred_Value_34 <− p r ed i c t . na ive_34$ byClass [3]

99

100 ### f i f t h f o l d

101 car tdata . t r a i n i ng_35 <− car tdata_3[− s e t . 5 ,]

102 car tdata . t e s t i n g_35 <− car tdata_3 [s e t . 5 ,]

103 c l a s s i f i e r . na ive ._35 <− naiveBayes (xdata_3 , ydata_3 , data = cartdata . t r a i n i ng_

35)

104 p r ed i c t . c l a s s i f i e r . na ive ._35 <− p r ed i c t (c l a s s i f i e r . na ive ._35 , newdata=cartdata .

t e s t i n g_35)

105 ydata . t e s t i n g_35 <− car tdata . t e s t i n g_35 [s e t . 5 , 1]

106 l i b r a r y (ca r e t)

107 p r ed i c t . na ive_35 <− confus ionMatr ix (data = pr ed i c t . c l a s s i f i e r . na ive ._35 ,

r e f e r e n c e= ydata . t e s t i n g_35)

108 #### Accuracy

109 accuracy_35 <− p r ed i c t . na ive_35$ o v e r a l l [1]

110 Kappa_35 <− p r ed i c t . na ive_35$ o v e r a l l [2]

111 AccuracyLower_35 <− p r ed i c t . na ive_35$ o v e r a l l [3]

Appendix D: Naive Bayes: 5-fold Cross Validation 100

112 AccuracyUpper_35 <− p r ed i c t . na ive_35$ o v e r a l l [4]

113 AccuracyNull_35 <− p r ed i c t . na ive_35$ o v e r a l l [5]

114 AccuracyPValue_35 <− p r ed i c t . na ive_35$ o v e r a l l [6]

115 McnemarPValue_35 <− p r ed i c t . na ive_35$ o v e r a l l [7]

116 s e n s i t i v i t y_35 <−p r ed i c t . na ive_35$ byClass [1]

117 S p e c i f i c i t y_35 <− p r ed i c t . na ive_35$byClass [2]

118 Pos_Pred_Value_35 <− p r ed i c t . na ive_35$ byClass [3]

119 Accurracy . na ive_3_cv <− c (accuracy_31 , accuracy_32 , accuracy_33 , accuracy_34 ,

accuracy_35)

120 Accurracy . na ive_3 <− mean(Accurracy . na ive_3_cv)

Listing D.1: Naive Bayes: 5-fold Cross Validation

Appendix E

Logistic Regression: Hold-Out Cross

Validation

1 l i b r a r y (ca r e t)

2 windows . 3 <− read . delim ("U: / c r o s s v a l i d a t i o n ex c e l r e s u l t / L o g i s t i c r e g r e s s i o n

r e s u l t s e c t i o n code and data/ Lo g i s t i c r e g r e s s i o n r e s u l t /windows 3 . txt ")

3

4 #l o g i s t i c . r e g r e s s i o n . r e s u l t . win . 3

5 # Hel ix va r i a b l e and pr ed i c t ed l o g i s t i c r e g r e s s i o n c l a s s from SPSS

6 l o g i s t i c . p r ed i c t . t e s t .H.w3 <− windows . 3 [, 1]

7 Respond . t e s t .H.w3 <− windows . 3 [, 2]

8 t e s tda t a c on fu s i o n . t e s t_H_w3 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t . t e s t .H.w3

, r e f e r e n c e=Respond . t e s t .H.w3)

9 l o g i s t i c . p r ed i c t . t r a i n .H.w3 <− windows . 3 [, 1]

10 Respond . t r a i n .H.w3 <− windows . 3 [, 2]

11 t e s tda t a c on fu s i o n . t r a i n_H_w3 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t . t r a i n .H.

w3 , r e f e r e n c e=Respond . t r a i n .H.w3)

12 accuracy . hold . out .H_w3 <− mean(c (t e s tda t a c on fu s i o n . t e s t_H_w3$ o v e r a l l [1] ,

t e s tda t a c on fu s i o n . t r a i n_H_w3$ o v e r a l l [1]))

13

14 # Sheet va r i a b l e and pr ed i c t ed l o g i s t i c r e g r e s s i o n c l a s s from SPSS

15 l o g i s t i c . p r ed i c t . t e s t . S .w3 <− windows . 3 [, 3]

16 Respond . t e s t . S .w3 <− windows . 3 [, 4]

17 t e s tda t a c on fu s i o n . t e s t_S_w3 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t . t e s t . S .w3

, r e f e r e n c e=Respond . t e s t . S .w3)

18 l o g i s t i c . p r ed i c t . t r a i n . S .w3 <− windows . 3 [, 3]

19 Respond . t e a i n . S .w3 <− windows . 3 [, 4]

20 t e s tda t a c on fu s i o n . t e s_S_w3 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t . t r a i n . S .w3

, r e f e r e n c e=Respond . t r a i n . S .w3)

21 t e s tda t a c on fu s i o n . t r a i n_H_w3 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t . t r a i n . S .

w3 , r e f e r e n c e=Respond . t r a i n . S .w3)

22 accuracy . hold . out . S_w3 <− mean(c (t e s tda t a c on fu s i o n . t e s t_S_w3$ o v e r a l l [1] ,

t e s tda t a c on fu s i o n . t r a i n_S_w3$ o v e r a l l [1]))

101

Appendix E: Logistic Regression: Hold-Out Cross Validation 102

23

24 # Coi l v a r i a b l e and pr ed i c t ed l o g i s t i c r e g r e s s i o n c l a s s from SPSS

25 l o g i s t i c . p r ed i c t . t e s t .C.w3 <− windows . 3 [, 5]

26 Respond . t e s t .C.w3 <− windows . 3 [, 6]

27 t e s tda t a c on fu s i o n . t e s t_C_w3 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t . t e s t .C.w3

, r e f e r e n c e=Respond . t e s t .C. w3)

28 l o g i s t i c . p r ed i c t . t r a i n .C.w3 <− windows . 3 [, 5]

29 Respond . t r a i n .C. w3 <− windows . 3 [, 6]

30 t e s tda t a c on fu s i o n . t r a i n_C_w3 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t . t r a i n .C.

w3 , r e f e r e n c e=Respond . t r a i n .C.w3)

31 t e s tda t a c on fu s i o n . t r a i n_C_w3 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t . t r a i n .C.

w3 , r e f e r e n c e=Respond . t r a i n .C.w3)

32 accuracy . hold . out .C_w3 <− mean(c (t e s tda t a c on fu s i o n . t e s t_C_w3$ o v e r a l l [1] ,

t e s tda t a c on fu s i o n . t r a i n_C_w3$ o v e r a l l [1]))

33

34 accuracy . hold . out .H_w3

35 accuracy . hold . out . S_w3

36 accuracy . hold . out .C_w3

Listing E.1: Logistic Regression: Hold-Out Cross Validation

Appendix F

Logistic Regression: 5-fold Cross

Validation

1 l i b r a r y (ca r e t)

2 windows_31 <− read . delim ("U: / c r o s s v a l i d a t i o n ex c e l r e s u l t /New f o l d e r /windows_

31 . txt ")

3 windows_32 <− read . delim ("U: / c r o s s v a l i d a t i o n ex c e l r e s u l t /New f o l d e r /windows_

32 . txt ")

4 windows_33 <− read . delim ("U: / c r o s s v a l i d a t i o n ex c e l r e s u l t /New f o l d e r /windows_

33 . txt ")

5 windows_34 <− read . delim ("U: / c r o s s v a l i d a t i o n ex c e l r e s u l t /New f o l d e r /windows_

34 . txt ")

6 windows_35 <− read . delim ("U: / c r o s s v a l i d a t i o n ex c e l r e s u l t /New f o l d e r /windows_

35 . txt ")

7 #l o g i s t i c . r e g r e s s i o n . r e s u l t . win . 3

8 # Hel ix va r i a b l e and pr ed i c t ed l o g i s t i c r e g r e s s i o n c l a s s from SPSS

9 l o g i s t i c . p r ed i c t .H. w31 <− windows_3 1 [, 1]

10 Respond .H. w31 <− windows_3 1 [, 4]

11 t e s tda t a c on fu s i o n_H_w31 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t .H. w31 ,

r e f e r e n c e=Respond .H. w31)

12

13 l o g i s t i c . p r ed i c t .H. w32 <− windows_3 2 [, 1]

14 Respond .H. w32 <− windows_3 2 [, 4]

15 t e s tda t a c on fu s i o n_H_w32 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t .H. w32 ,

r e f e r e n c e=Respond .H. w32)

16

17 l o g i s t i c . p r ed i c t .H. w33 <− windows_3 3 [, 1]

18 Respond .H. w33 <− windows_3 3 [, 4]

19 t e s tda t a c on fu s i o n_H_w33 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t .H. w33 ,

r e f e r e n c e=Respond .H. w33)

20

21 l o g i s t i c . p r ed i c t .H. w34 <− windows_3 4 [, 1]

22 Respond .H. w34 <− windows_3 4 [, 4]

103

Appendix F: Logistic Regression: 5-fold Cross Validation 104

23 t e s tda t a c on fu s i o n_H_w34 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t .H. w34 ,

r e f e r e n c e=Respond .H. w34)

24

25 l o g i s t i c . p r ed i c t .H. w35 <− windows_3 5 [, 1]

26 Respond .H. w35 <− windows_3 5 [, 4]

27 t e s tda t a c on fu s i o n_H_w35 <− confus ionMatr ix (data = l o g i s t i c . p r ed i c t .H. w35 ,

r e f e r e n c e=Respond .H. w35)

28

29 thedata .H. accuracy_w3 <− c (t e s tda t a c on fu s i o n_H_w31$ o v e r a l l [1] , t e s tda t a c on fu s i o n

_H_w32$ o v e r a l l [1] , t e s tda t a c on fu s i o n_H_w33$ o v e r a l l [1] , t e s tda t a c on fu s i o n_H_

w34$ o v e r a l l [1] , t e s tda t a c on fu s i o n_H_w35$ o v e r a l l [1])

30 accuracy .H. cv_w3 <− mean(thedata .H. accuracy_w3)

31 accuracy .H. cv_w3

Listing F.1: Logistic Regression: 5-fold Cross Validation

Appendix G

Confidence Interval: R Code

1 a l l . r e s u l t <− read . csv ("C: /temp/Data/ Thes i s code/new r e s u l t hold out/ only shee t .

csv ")

2

3 the . mean <− apply (a l l . r e s u l t , 2 ,mean)

4 the . sd <− apply (a l l . r e s u l t , 2 , sd)

5 the . min<− apply (a l l . r e s u l t , 2 , min)

6 the .max <− apply (a l l . r e s u l t , 2 ,max)

7 themin <− min (a l l . r e s u l t)

8 themax <− max(a l l . r e s u l t)

9 p lo t (the . mean , type="p" , pch=16 , xaxt="n" , , x lab=" C l a s s i f i c a t i o n accuracy

approaches" , y lab="Confidence i n t r e v a l s " , ylim=c (themin , themax) , c o l="blue ")

10 l i n e s (the . mean , lwd=2, l t y=" s o l i d " , c o l="blue ")

11 y<− c (1 : 6)

12 arrows (the . mean+1.96∗ the . sd , y , the . mean−1.96∗ the . sd , y , code = 3 , ang le =90 ,

l ength = 0 . 1 , c o l="blue ")

13 arrows (y , the . min , y , the .max , code = 3 , ang le = 90 , l ength = 0 . 1 , c o l="blue ")

14 ax i s (1 , at = y , l a b e l s=c ("NB " , "LR" , "CT" , "NB CV" , "LR CV" , "CT CV") , cex . a x i s

=0.8)

Listing G.1: Confidence Intervals: R Code

105

