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Abstract

Analytical problems caused by over-fitting, confounding and non-independence in the data
is a major challenge for variable selection. As more variables are tested against a certain
data set, there is a greater risk that some will explain the data merely by chance, but will fail
to explain new data. The main aim of this study is to employ a systematic and practicable
variable selection process for the spatial analysis and mapping of historical malaria risk in
Botswana using data collected from the MARA (Mapping Malaria Risk in Africa) project
and environmental and climatic datasets from various sources. Details of how a spatial
database is compiled for a statistical analysis to proceed is provided. The automation of the

entire process is also explored.

The final bayesian spatial model derived from the non-spatial variable selection procedure
using Markov Chain Monte Carlo simulation was fitted to the data. Winter temperature
had the greatest effect of malaria prevalence in Botswana. Summer rainfall, maximum
temperature of the warmest month, annual range of temperature, altitude and distance to
closest water source were also significantly associated with malaria prevalence in the final
spatial model after accounting for spatial correlation. Using this spatial model malaria
prevalence at unobserved locations was predicted, producing a smooth risk map covering

Botswana.

The automation of both compiling the spatial database and the variable selection procedure
proved challenging and could only be achieved in parts of the process. The non-spatial
selection procedure proved practical and was able to identify stable explanatory variables
and provide an objective means for selecting one variable over another, however ultimately
it was not entirely successful due to the fact that a unique set of spatial variables could not
be selected.
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Chapter 1

Introduction

1.1 Background

Geographical variations of disease have been a subject of interest (Cibulskis et al., 2007,
Zayeri et al., 2011) in epidemiology for a long time, as demonstrated in the monograph by
Doll (1980). Doll was one of the first to study the influence of environment and lifestyle
characteristics on cancer mortality. Doll stated that his hypotheses arose from studying
the geographic distribution of various cancers (Richardson et al., 2004). This highlights
the importance as seen through history, of studying such variations. The main goal of this
thesis is to present a case study of the spatial analysis of malaria count data or malaria
prevalence data from survey stations across Botswana collected between 1944 and 1997.
These prevalence data are point-referenced spatial data, otherwise known as geostatistical
data. A historical continuous risk map of malaria in children between 1 and 15 years of age
in Botswana will be the final result, including predictions of risk at unsampled sites, along

with maps of significant environmental risk factors.

Malaria is a mosquito-borne infectious disease caused by the Plasmodium falciparum parasite
(World Health Organization, 2014). Malaria is a major cause of morbidity and mortality in
large areas of the developing world, especially Africa (Gosoniu, 2008). Rough calculations
suggest that 250 million new cases occur globally every year (Zayeri et al., 2011). National
and global estimates of the burden of disease are imprecise as a result of inadequate malaria
case reporting in most endemic countries and also because of the lack of nation wide malaria
surveys (Cibulskis et al., 2007). Accurate risk maps that describe the spatial variation
and prevalence of the disease have long been recognized as instrumental for the planning
of malaria prevention and control, and for estimating the disease burden (Gemperli et al.,

2006). In this study the terms prevalence and risk will be used interchangeably in describing



malaria risk or prevalence.

There is a growing recognition of the importance of robust handling of uncertainty. The
advancement of spatial theory by authors like Cressie (1991), Diggle et al. (1998), and Finley
and Banerjee (2013) and the increasing availability of computation facilities, for example,
through open source programs like R (R Core Team, 2013) and its powerful spatial packages
like sp which supports spatial data (Pebesma and Bivand, 2005), spdep which supports dis-
tance and proximity analysis (Bivand, 2013), geoRglm (Christensen and Ribeiro Jr, 2002),
spBayes (Finley and Banerjee, 2013) which implement Bayesian spatial Gaussian and gen-
eralized linear regression mixed models; as well as the growing appreciation for the need
of robust uncertainty handling have all contributed to a relatively recent shift in spatial
thinking that utilize a special family of generalized linear models known as model-based
geostatistics (MBG). MBG is generally implemented in a Bayesian framework (Diggle et al.,
1998; Diggle and Ribeiro, 2007, p. 15). This type of research can be helpful for the purpose of
highlighting areas of elevated disease risk in the interest of prioritizing resources, especially

where resources are limited (Kazembe et al., 2006).

Proximity of observations, that is the closeness of survey sites, in space introduces corre-
lations between the observations rendering the independence assumption of standard sta-
tistical methods invalid. Ignoring spatial correlation may result in underestimation of the
standard error of the parameter estimates, and therefore liberal inference as the null hy-
pothesis may be rejected too often (Mohebbi et al., 2011).

This thesis will review and develop non-spatial and spatial models for the analysis of count
data in space. A case study of malaria in Botswana using historical count data is presented.
Initially non-spatial models are built using a staged variable selection procedure. This pro-
cedure will attempt to ensure that multicollinearity, confounding and overfitting is avoided
and that the most representative variables are included in the spatial model. A spatial
generalized linear mixed (SGLM) model will then be developed using the variables selected
by the non-spatial analysis. This SGLM model will be built in a Bayesian framework using
Markov chain Monte Carlo (MCMC) methods available in the spBayes package (Finley and
Banerjee, 2013) in R (R Core Team, 2013). The resulting spatial model will then be used
to predict malaria risk everywhere in Botswana on a prediction grid. To check the accuracy
of predictions cross validation between derivation and validation subsets of the data will
be performed. Recommendations will also be given as to how these kinds of results can be

incorporated into a geographic information system (GIS).



1.2 Research Questions

1. Is there evidence to link the incidence of malaria prevalence to environmental and

climatic variables?

2. Is the non-spatial selection procedure effective? Does the procedure have an effect on

selecting spatial variables?
3. Is the predictive performance in the spatial model better than the non-spatial model?
4. Are there areas of high malaria risk?

5. Are the results, particularly the predictions of risk, useful? Can they be used to
develop a GIS and if so, how?

6. Are all necessary routines available in R to conduct the analyses?

7. Can the process be automated?

1.3 Research Objectives

Regression models for spatial count data, using the binomial model in a Bayesian framework
are reviewed. This review will make clear why a spatial model is used so as to incorporate
non-independent or correlated data. The simple linear model is extended to accommodate
count data modelled using a Binomial distribution. This generalized linear model (GLM) is
appropriate because of the non-normality of the errors. GLMs require independent obser-
vations. Generalized linear mixed models in a spatial context are introduced as a method
to deal with correlated data. This will provide the context needed for the development of a
parsimonious model that explains the spatial nature of malaria and its attributing environ-
mental factors. Extensive non-spatial multi-stage modelling criteria are introduced to select
the best set of geographic indicators. Once this is achieved, malaria risk will be predicted
at sample sites in the validation subset of the data. Predictions will also be made using a
suitable prediction grid all over Botswana. Details of how spatial data in R are handled are
also provided. In addition an example of how a spatial database is compiled to facilitate the
spatial analysis. Finally, recommendations and a discussion will be given as to how a policy

maker might benefit from these resultant maps.

1.4 Structure of Thesis

This thesis is made up of four chapters and is structured as outlined below:



1.5

Chapter 1 is the current chapter which serves as an introduction and outline of what

this thesis entails.

Chapter 2 is the literature review of previous work done on malaria, from a non-
spatial and spatial point of view, and how Geographic Information Systems (GIS)

with geostatistics has been used in disease mapping applications.

Chapter 3 details the materials as well as the methods and techniques incorporated in
this thesis.

Chapter 4 discusses the results of the methods outlined in Chapter 3, as well as a

discussion and conclusions, as it applies to the Botswana case study.

Definitions

Geographic Information System (GIS): a suite of computer based tools used for the
manipulation, management, analysis and capture of spatial data (Huisman and Rolf,
2009, p. 32).

GIS software: computer software that can be used to develop tools for the spatial
analysis of data (Huisman and Rolf, 2009, p. 142).

Map projection: the mathematical transformation of the Earth’s curved 3-d surface
to a flat 2-d plan, that is a map (Huisman and Rolf, 2009, p. 520).

Map coordinate system: a reference system defined on a flat, 2-d surface used to
represent or locate the locations of geographic features, imagery, and observations
such as GPS (Global Positioning System) locations using a particular map projection,
such as azimuthal stereographic projection, as used in the Netherlands, or WGS84
(World Geodetic System 1984) which provides the current standard for locational
measurement worldwide (Huisman and Rolf, 2009, p. 520).

Geo-referenced data: refers to data defined using map coordinates in a specific map
coordinate system which is referenced to a datum. A datum provides a frame of
reference for measuring locations on the surface of the Earth, that is the relationship
between the surface and the position of the surface relative to the center of the earth
(Bernhardsen, 2002, p. 116; Lowry, 2004). Different reference surfaces are used to
approximate the Earth’s surface. The two main reference surfaces used are called the
Geoid and the ellipsoid (Huisman and Rolf, 2009, p. 192).



Geostatistics: a sub-branch of spatial statistics consisting of data which are a finite
sample of measured values relating to an underlying spatially continuous phenomenon
(Diggle and Ribeiro, 2007, p. 7). The main goal of geostatistics is to model continuous
spatial variation (Ribeiro et al., 2001).

Interpolation: to estimate the value of a continuous variable given by n sampled values

at some intermediate point or instant (Huisman and Rolf, 2009, p. 518).

Euclidean distance: the standard straight line, Pythagorean distance function between
locations (Huisman and Rolf, 2009, p. 515).

Bayesian geostatistical analysis: involves the use of probability theory to find a prob-
ability distribution that quantifies knowledge about an unknown map given imperfect
data, and making predictions using that probability distribution with associated pre-
cision (Patil et al., 2011).

Probability distribution: for a discrete random variable, a mathematical formula defin-
ing the probability of each value of the variable, for example a random variable fol-
lowing the binomial distribution. For a continuous random variable, a mathematical
formula describing a curve which specifies, by means of the areas under the curve, the
probability that the variable falls within a particular interval, for example a random
variable following the normal distribution (Everitt, 2002, pp. 312-314).

Likelihood: the probability of some observed outcomes given the value of some pa-
rameter or set of parameters. For example, the likelihood of a set of parameter values,
0 given a random sample of n observations, x1,...,xz, with probability distribution
f(x,0) is equal to the probability of those observed outcomes given those parameter
values and is given by L =[]}, f(z;,0) (Everitt, 2002, p. 232).

Prior: the probability or uncertainty associated with an unknown variable in a model

before data have been taken into account (Gelman et al., 2014, p. 481).

Posterior: the probability distribution of an unknown quantity conditional on the data.
It can be derived given the prior and the likelihood using Bayes’ Rule (Gelman et al.,
2014, p. 32).

Posterior predictive: similar to posterior except it usually signifies that the variable
considered relates to predicted data, such as in this thesis, predicting malaria risk at

unsampled locations (Gelman et al., 2014, p. 118).



e Markov chain Monte Carlo (MCMC): a popular and efficient algorithm for drawing
samples from posterior distributions (Basanez et al., 2004). Typically MCMC method-
ology seeks to obtain characteristics of interest, for example the mean and variance
of the marginal distribution, f(x) arising from a joint distribution, g(z,y1,...,y4) as
f@)y=[...[g(z,y1,-..,yg)dy1,...,dy, Generally the necessary integrations to cal-
culate f(x) are extremely difficult or intractable, either analytically or numerically.
MCMC methods incorporate simulation based methods in order to effectively allow
for the drawing of samples from f(z) without requiring f(x) explicitly (Everitt, 2002,
pp. 248-249).

e Bootstrap sampling: sampling with replacement to produce random samples of size n
from the original data, z1,...,z,. These n samples are called bootstrap samples and

each sample provides an estimate of the parameter of interest (Everitt, 2002, p. 55).



Chapter 2

Review Of Previous Malaria

Prevalence Studies

2.1 Applications of GIS and Mapping in Malaria Studies

GIS can be broadly described as a computer-based technology used for handling geographical
data in digital form for the purpose of capturing, storing, manipulating, analyzing and

displaying a wide variety of spatial or geo-referenced data (Burrough and McDonnell, 1998,
p. 11).

Data such as climatic and environmental variables, distances, areas, and selections based on
spatial criteria that are stored within a GIS, can provide the inputs needed for statistical
modelling (Kleinschmidt, 2001). Large amounts of information are necessary for almost all
aspects of malaria control programmes (Daash et al., 2009). In this context GIS can be
thought of as a spatial database or information management system, making large amounts
of data easily accessible. Maps of interest given certain spatial criteria can be quickly

retrieved and easily compiled into a document or report (Huisman and Rolf, 2009, p. 32).

Data can easily be updated and new maps can be generated to highlight hot spots of malaria
prevalence in the interest of timely and focused malaria control planning. A GIS based
approach in a national malaria control programme in India helped to identify hot spots
of malaria prevalence and provided the inputs needed for a spatial analysis of the disease
(Daash et al., 2009). A GIS based approach was successfully applied to malaria research
and control in South Africa (Martin et al., 2002). This enabled the data to be timeously
processed into usable formats. In this paper, Martin et al. (2002) stressed the relevance of

GIS to malaria research.



Spatial statistical models yield estimated quantities of the population parameters for the
purpose of quantifying the true underlying magnitudes and their associated uncertainty
rather than the mere mapping of recorded data that are subject to sampling error. Spatial
statistical modelling uses statistical methodologies to deal with the random nature of the
processes involved. Using a purely GIS approach tends not to deal with the random nature of
processes explicitly and therefore such models can produce only point estimates of processed
quantities at specific locations typically located on a grid (Kleinschmidt, 2001). As a result

GIS should be used in conjunction with appropriate spatial statistical methodologies.

2.2 Environmental Risk Factors

Various ecological and climatic factors affect the development and survival of the Plasmodium
falciparum parasite and the malaria-transmitting Anopheles vector (Molineaux et al., 1988).
When predicting the risk of malaria infection in Africa the following environmental and

climatic factors have been considered in prior studies:

e rainfall (Kleinschmidt et al., 2000; Craig et al., 2004; Abeku et al., 2004; Kazembe
et al., 2006; Gemperli et al., 2006);

e vegetation coverage (Hay et al., 1998; Kleinschmidt et al., 2000; Gemperli et al., 2006;
Craig et al., 2007);

e distance to water bodies (Kleinschmidt et al., 2000, 2001; Omumbo et al., 2002;
Kazembe et al., 2006; Gemperli et al., 2006; Craig et al., 2007);

e altitude (Craig et al., 1999; Omumbo et al., 2002; Kazembe et al., 2006);

e temperature (Craig et al., 1999; Kleinschmidt et al., 2000, 2001,7; Omumbo et al.,
2002; Craig et al., 2004; Kazembe et al., 2006; Gemperli et al., 2006; Craig et al.,
2007) and

e bioclimatic variables (Kulkarni et al., 2010; Chammartin et al., 2013; Scholte et al.,
2014).

These variables are typically generated through interpolation of average monthly climate
data from weather stations over a long term period, for example, a 50 years (Hijmans
et al., 2005). The references listed for each explanatory variable shows their wide use as
predictors in malaria studies conducted in Africa. Table 2.1 below shows the source of each

environmental and climatic factor used in the present analysis.



Table 2.1: Spatial databases used in this study.

Layer Type Resolution Source

NDVI raster 1 km NASA Land Processes Distributed Active
Archive Center (2001)

Temperature raster 1 km Hijmans et al. (2005)

Rainfall raster 1 km Hijmans et al. (2005)

Elevation raster 1 km Hijmans et al. (2005)

Bioclimatic ~ raster 1 km Hijmans et al. (2005)

Variables

Water bodies raster 1 km Gazetteer (2006)

2.3 Techniques Used for Modelling Malaria Prevalence

2.3.1 The Modelling Techniques Reviewed

Before considering the spatial aspects of the data, a non-spatial analysis is typically under-
taken (Craig et al., 2007; Noor et al., 2009; Zacarias and Andersson, 2011). The attribute
space can be explored by ignoring the coordinates and building a non-spatial Generalized
Linear model (GLM). Gosoniu et al. (2006) first fitted a non-spatial regression model on
malaria count data in Mali in order to determine which factors and possible transformations

should be included in the spatial Bayesian modelling that follows.

In an influential paper by Diggle et al. (1998), spatial process models for non-Gaussian
data within the framework of generalized linear models were discussed and implemented.
Numerous studies modelling the spatial distribution of malaria and other tropical diseases
in Africa and their association with environmental factors have taken this Bayesian ap-
proach, see for example Kleinschmidt et al. (2001), Kleinschmidt et al. (2002), Mabaso
et al. (2005), Clements et al. (2006). These Bayesian geostatistical methods are described
and implemented by Craig et al. (2007), Gosoniu et al. (2006) and others and are based on
the pioneering work of Diggle et al. (1998).

In dealing with spatial dependence among the residuals a common solution is to add a
spatially-varying model intercept that accounts for spatial association through a decreasing
function of distance and perhaps direction between observed locations (Diggle et al., 1998).
Apart from ensuring the statistical validity of the model, adding a random spatial effect
to the intercept allows conveniently for the separation of residual uncertainty into a spatial
and non-spatial component. Appropriately accounting for residual uncertainty can improve

inference, reveal missing explanatory variables and allow for better prediction accuracy and



precision (Diggle and Ribeiro, 2007). The properties of stationarity and isotropy in spatial
data are often assumed (see Chapter 3 Section 3.6.3 on page 32 for a discussion of stationarity
and isotropy) to simplify matters (Cressie, 1991, p. 57 ), since they cannot be subjected to
formal rigorous hypothesis testing (Ver Hoef and Cressie, 2001, p. 299). These properties
however can be investigated by exploratory data analysis, see Ver Hoef and Cressie (2001, p.
299): 'These assumptions are impossible to test, because it is impossible to go back in time
again and again to generate the experiment each time to check whether each experimental
unit has the same mean value or weather the correlation is the same for all pairs of plots
that are at some fixed distance from each other.” Myers (1989, p. 348) also asserts that it
is not possible to test any data set for stationarity because a data set is only one realization

of the random function.

Spatial models can be fitted within a Bayesian framework using an adaptive Metropolis
within Gibbs sampler (Roberts and Rosenthal, 2009). Computations can be performed in R
(R Core Team, 2013) using the spGLM function in the spBayes package (Finley and Banerjee,
2013). This Bayesian routine in conjunction with a Binomial Generalized Linear Mixed
Model (GLMM) on the logit scale was used in a species distribution modelling context by
Swanson et al. (2013). Finley et al. (2008) implemented a Bayesian spatial logistic regression
model to predict forested areas. A similar Bayesian routine in the geoRglm (Christensen
and Ribeiro Jr, 2002) R package has been used by others in a spatial malaria modelling
context. See for example Kazembe et al. (2006) and Craig et al. (2007).

2.3.2 A Brief Review of Prior Models Implemented

A spatial analysis in Mali was undertaken by Gosoniu et al. (2006). The malaria prevalence
data used in this analysis are stored in the MARA database (Le Sueur et al., 1997). These
data were generated from surveys carried out on children between 1 and 10 years old at
89 sites between 1977 and 1995. A total of 43 492 children were surveyed. The climatic
variables were aggregated into yearly averages over the months suitable for transmission
following the map of Gemperli et al. (2006). The climate suitability criteria used in the
generation of this map is an amended version of Tanser et al. (2003). The explanatory
variables were standardized prior to model fitting. Among other considerations (such as
building a non-stationarity model), a comparison of fit between the spatial and non-spatial
models was performed. Surprisingly the spatial analysis yielded a positive relation between
malaria risk and the distance to water. This novel result implies that malaria risk increases
as the distance increases from permanent water bodies in Mali. This is surprising since

Anopheles mosquitoes typically breed in water (World Health Organization, 2014).
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Zacarias and Andersson (2011) implemented a hierarchical model applied to malaria count
data in Maputo, Mozambique, aggregated at district level over a two years period (2001 and
2002). This period was divided into two climate conditions: rainy and dry seasons. The
two years of climatic data, monthly averages, maximum temperature and rainfall were ob-
tained from INAM (Mozambique National Meteorology Institute) and used as explanatory
variables. Monthly maximum temperature and rainfall data were used in the model. This
spatial analysis led to the conclusion that temperature and rainfall were significant in ex-
plaining malaria prevalence, with relative differences in importance in Winter and Summer.
This study found that these explanatory variables do not explain all the variability present
in the malaria data given the effect of overdispersion that is captured by regional structured
and unstructured random effects. This lends support to the inclusion of a spatial random
intercept to the standard GLM model in the current study in so far as it might help explain
otherwise unexplained variation. Clements et al. (2006), who fitted Bayesian models to the
parasite disease schistosomiasis, noted that adding a spatial dependence structure to the
data made it evident that, notwithstanding what is known as biologically important en-
vironmental explanatory variables, the statistical relationships observed in the non-spatial
models were no longer supported by the data and spurious significant relationships between
the explanatory variables and malaria risk would have been accepted had spatial correlation

not been considered.

Noor et al. (2009) built Bayesian geostatistical spatial-temporal models in their work in
Kenya. P. falciparum parasite rate data were assembled from cross-sectional community
based surveys undertaken from 1975 to 2009 and corrected to a standard age-range of 2 to
less than 10 years, denoted as PfPRo_19. After visually examining the relationships of the
chosen explanatory variables in their continuous and categorical forms against PfPRy_19
using scatter and box plots, the explanatory variables were aggregated into categories that
are in line with biologically appropriate themes or categories, corresponding with the litera-
ture and expert knowledge. A non-spatial binomial logistic regression model was then fitted
with the following categorical environmental factors: urbanization, minimum and maximum
temperature, sets of 3 consecutive months in an average year of rainfall, enhanced vegetation
index, altitude and distance to main waterbodies. Where more than one possible way of
categorizing a explanatory variable presented itself, the size of the odds ratio, the Wald’s
p-value and the value of the Akaike’s Information Criterion (AIC) score (see Chapter 3
Section 3.4.1 on page 26 for a discussion of the AIC) were used to establish the best way
of categorizing the explanatory variables in order to achieve the strongest association with
PfPRs_19. No transformations on the data were considered. This non-spatial analysis
showed that all the biologically selected categorized explanatory variables were statistically

significant predictors of differences in PfPRo_19. A collinearity test of all these explana-

11



tory variables was undertaken and if a pair had a correlation coefficient of greater than 0.9
(Clements et al., 2006) the variable with the highest AIC was dropped and not used further
in the analysis. This study found a reduced risk of prevalence in areas that had the following

characteristics:

e urban relative to rural;

e maximum average annual temperatures of less than 25°C or greater than 30°C com-
pared to between 25°C - 30°C;

e zero or 1-3 sets of three adjacent months of rainfall greater than 60 mm in an average
year compared to corresponding rainfall patterns greater than 3 sets in an average

year;
e where EVI was less than or equal to 0.3 compared to greater than 0.3;

e distance to main water bodies of greater than 12 km relative to less than or equal to
12 km.

12



Chapter 3

Methodology

3.1 Overview

Generalized linear models (GLM) are typically used to model linear relationships where it
is assumed that the data in question are independent (Dobson and Barnett, 2008, p. 51).
Data in spatial statistics are typically spatially correlated (Diggle and Ribeiro, 2007, p. 30).
This methodology chapter will explain how a spatial database or GIS is compiled as well as
explain the theory involved in studying such correlated data. Regression models for count
data are introduced and explained. The simple linear model is extended to the GLM. GLMs
are extended to the spatial generalized linear mixed model (SGLM). Non-spatial models are
discussed. These models are extended to include a spatial component. This non-spatial
model arises from a staged variable selection procedure (Craig et al., 2007). How and why
this procedure improves the spatial model will be discussed. The spatial models will be
in a Bayesian framework using the spGLM function in the spBayes package (Finley and
Banerjee, 2013) in R. These techniques and computational procedures are applied to a real
data set consisting of malaria count data at different sample sites in Botswana in Chapter
4.

3.2 Geospatial Data in R

3.2.1 Overview

By the year 2000 there was a lot of activity and interest in spatial analysis. GIS software
use was increasing and getting wide coverage and maps were appearing from web providers

such as MultiMap (Matise et al., 1994). Google Maps was still 5 years away and so as a way
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to make sense and order of this, the Open Geospatial Consortium (OGC) (Open Geospatial
Consortium, 1994) created a standard for spatial data and OGC protocols. The OGC
Simple Features Specification defines data for points, lines, and polygons with associated
attribute data. This format was implemented in R in the sp package as discussed in the
book by Bivand et al. (2008) entitled Applied Spatial Data Analysis in R. The development
of these spatial object classes and methods in the sp package, and its closer dependencies,
was guided by the idea that users who are new to R but have GIS experience will want
to see ’layers’, 'coverages’, 'rasters’, or 'geometries’. From this point of view, sp classes
should not present difficulties to GIS users. On the other hand, for statisticians using R,
data are typically stored in a data.frame, a rectangular table with rows of observations on
columns of variables. These classes were therefore developed to appear as GIS data models
to GIS and other spatial data users and look and behave like data frames benefitting applied
statisticians and other data analysts (Bivand et al., 2008, p. 1).

3.2.2 Technical Details: Compiling Spatial Databases

Spatial data have coordinate values and a system of reference for these coordinates (Diggle
and Ribeiro, 2007, p. 7). These data can be point locations or sites (with longitude/lati-
tude coordinates) with attributes such as the number of people infected with malaria and
the number examined at each site. These data are typically termed point-referenced data
(Gemperli, 2003). Consider that if all these points of malaria risk data were to be drawn on
a (flat) map, there would inevitably be a shift in the relative positions of these points. This
illustrates the problem of projection, that is having to translate from the spherical longi-
tude/latitude system to the non-spherical coordinate system (Diggle and Ribeiro, 2007, p.
7).

Gridded spatial data consisting of an array of equally sized cells arranged in rows and
columns and composed of one or many attributes or bands, are known as raster images or
raster layers. With these data, raster image processing and operations are required (Diggle
and Ribeiro, 2007, p. 3). This process requires that georeferenced raster image layers must
be acquired. Subsequently all raster layers must be in the same projection and must be
precisely spatially aligned and cover exactly the same area (Hijmans, 2013). This means
that all the rows and columns in all raster layers must have the same number of rows and
columns and they must match pixel for pixel (Hijmans, 2013). Once aligned and in the
same projection each cell in each raster layer will refer to the same position in space and the
point locations can then be overlaid onto the map of the study area (Diggle and Ribeiro,
2007, p. 116). Overlay operations involve the combining of two (or more) spatial data layers

comparing them position by position (Huisman and Rolf, 2009, p. 345). A spatial database
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is compiled by extracting the raster values from each layer at each sample point. With
the exception of the MODIS NDVI data sets, all selected data layers are unprojected in a
geographic coordinate system and the datum is WGS84 at 1 km spatial resolution.

Once all layers are aligned they are combined into a spatial data structure in R, namely
a spatial points dataframe (SPDF). From here a statistical analysis can follow. Below is a
detailed description of the process applied in this study. References to the relevant lines of

R code in the appendix are made.

e Set the current working environment or workspace. An environment is made up of
a frame or a collection of named objects, and a pointer to an enclosing environment
(R Core Team, 2013). For example, a frame of variables used to call a function are
enclosed in the environment or workspace where the function was defined. The named
objects or variables created in the current workspace can be saved and reloaded for
later use (R Core Team, 2013). Refer to code lines 6 to 7. The code lines before this

are comments.

e Load required packages for the spatial database compilation by running a function
which checks if each package is either installed on the system or available in R’s data
structure or in the current working environment or workspace (R Core Team, 2013).
New packages are installed. All required packages are loaded into the current working

environment. Refer to code lines 9 to 23.

e Create a database connection between R and MySql (MySQL Community Server,
2011) using the RMySQL package (James and DebRoy, 2012) in R. Import the raw
prevalence data including the month and year of the survey and its coordinates from
a .cvs file into a newly created MySQL table (MySQL Community Server, 2011) in R.
Load the relevant data obtained using a SQL query into a dataframe. Using MySQL
in R allows the user to execute a SQL statement on a database connection within R
(James and DebRoy, 2012). Using RMySQL is a useful way of extracting data from
a large database where filters are needed in order to obtain only the data required.
Refer to code lines 38 to 80.
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Installing MySQL on Unix/Mac OS system from the command prompt:

1.

Download appropriate file (Mac OS X 10.7 - at time of writing) from
http://dev.mysql.com/downloads/mysql (MySQL Community Server, 2011).

Open downloaded file and double click on appropriate .pkg file to install, for example
the mysql-x.x.xx-0sx10.x-x86 _32.pkg.

Go back to .dmg file and open MySQLStartupltem.pkg and install this. This second
installation enables the starting of MySQL server instance when the Mac is turned on.

Note that this can be done manually in the system preferences.

For convenience, edit the PATH variable in the terminal to ensure that the MySQL
command will be recognized for future use. As a result it will then not be necessary to
navigate to the full path where MySQL is installed. The PATH variable can be edited
in the terminal by typing: export PATH = ${PATH} /usr/local/mysql/bin/

Once the above has been done it is important to save the .csv file, which contains the
spatial data, in the /usr/local directory for example, so that MySQL knows where to
get the data.

Clean up the data, that is remove duplicate coordinates, remove entries where zero
people were examined and across sites that have multiple counts take average count

across years and months. See code lines 83 to 99.

Read in surface water body shapefile using the readShapePoints function available in
the maptools package (Bivand and Nicholas, 2014) in R. Refer to code lines 110 to
111.

Calculate the distance to the closest surface water body at each site. In a loop, at
each sample site use the spDistsN1 function available in the sp package (Bivand et al.,
2008) which calculates the Great Circle distance (WGS84 ellipsoid) from a single point
to all surface water bodies in kilometers. The Great Circle distance takes the earth’s
curvature into account, for example the distance along earth’s surface (Dormann et al.,
2007). At each site a vector of the distance to all surface water bodies is obtained.

The minimum at each site is taken. Refer to code lines 104 to 122.

Obtain a map of the boundary of Botswana for overlay purposes. Boundary maps are
available in the maps package (Becker et al., 2013) in R. Ensure that the spatial points
dataframe (SPDF) containing the sample points is in the same unprojected geographic
coordinate system as the Botswana boundary map. Keep sample points that are inside

the spatial domain, that is all of Botswana. Refer to code lines 130 to 146.
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Download all available monthly NDVI images for the years 2000 - 2013 (MODIS
PRODUCT MOD13A3) using functions in the "ModisDownload.R" script and "Mod-
isLP.RData” work space (Naimi, 2014). The MODIS Terra product, MOD13A3, pro-
vides monthly data for the years 2000 to 2013 at 1 km resolution in the Sinusoidal
projection with a scale factor of 0.0001. The output file is in Hierarchical Data For-
mat (HDF) format. This format is designed to store and manage large amounts of
numerical data (Qu et al., 2006, p. 123). This HDF file contains 11 Scientific Data
Sets (SDS) stored in array format. Extract only the relevant sub dataset, namely the
mean monthly NDVI sub dataset, from all HDF files across all years. Refer to code
lines 161 to 174.

Using the raster function available in the raster package (Hijmans, 2013) read in a
WorldClim raster layer for any month and crop this layer to the same extent as the
Botswana shapefile. Compare this WorldClim raster layer to a MODIS mean monthly
NDVT sub dataset obtained in the previous step for any month and year. In order to
establish which raster layer should be the reference layer, compare the dimensions of

the two raster layers. Refer to code lines 176 to 186.

Extract NDVI sub datasets for each month across all years. Refer to code lines 188 to
227.

Loop through each month and through all the years (2000 - 2013) of data reprojecting,
merging tiles and converting to TIFF format in one step using MODIS NDVI layer as
the model or reference raster. Various image blocks or tiles cover the area of Botswana
and thus must be merged to span the relevant area (Naimi, 2014). This is achieved
using the gdalwarp function in the gdalUtils package (Greenberg and Mattiuzzi, 2014)
in R. Refer to code lines 229 to 252.

Initialize raster stacks to be populated with climate and NDVI layers. A raster stack
is a collection of raster layer objects with the same spatial extent and resolution. A
raster stack can be created from raster files such as TIFF images (Hijmans, 2013).
Refer to code lines 265 to 271.

For the NDVI monthly layers apply NDVIRasterFunction to each monthly TIFF image
for each year. The function involves calculating the mean NDVTI value of each cell for
each month across all years and multiplying each cell by the scale factor 0.0001. Refer
to code lines 273 to 283.

Read in all WorldClim climate TIFF images into a list in R. Refer to code lines 262
to 263.
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e Populate each WorldClim climate raster stack in a loop for each month across all years
using the raster function in the raster package (Hijmans, 2013). Multiply temperature
layers by the scale factor 0.1 and crop to the extent of the NDVI reference raster.
There is no scale factor used for rain layers. Crop rain layers to the extent of the
NDVT layer. No loop needed for altitude since the altitude is constant across months.
Refer to code lines 285 to 303.

e Resample all climate WorldClim layers to match the reference raster layers, namely
the NDVI layers. Refer to code lines 306 to 312.

e Write the sample points and attributes of the Spatial Points Data Frame (SPDF)
to a polygon covering Botswana using the writeOGR function available in the rgdal
package (Bivand et al., 2013). Read this polygon as a new SPDF object using the
readOGR function available also in the rgdal package in R. Refer to code lines 328 to
337.

e Extract raster values at matching coordinates and add to the @data component of the
SPDF for each climate and environmental stack then give layers column names and
append them to the SPDF. Refer to code lines 339 to 370.

3.3 Regression Models for Count Data

3.3.1 Introduction

Regression models are often employed to assess the relationship between between a response
variable, also called a dependent or outcome variable, and one or more explanatory variables,
also called predictor variables, covariates or risk factors. Where there is only one explanatory
variable the analysis is called simple linear regression, and when there are more than one the
analysis is called multiple linear regression. Regression models for count data in epidemiology
are often employed when a study is concerned with the count of a disease within each spatial
region/unit comprising the area of interest (Lawson, 2013, pp. 6 - 13). More generally,
regression analysis in a spatial context allows one to model, examine, and explore and
predict spatial relationships between an outcome of interest such as malaria prevalence in
Africa, and its environment. Simple linear regression is a good starting point for the spatial

regression analysis that follows.
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3.3.2 Simple Linear Regression

In a simple linear regression model the response variable, denoted by y;, is modelled by a
linear function of the explanatory variable, denoted by x;, plus an error term, denoted by ;.
Bp is the intercept, that is the predicted value of y; when x; equals zero. 3 is the regression
coefficient. The regression coefficient represents the rate of change of the response variable
as the dependent explanatory variable changes (Everitt, 2002, p. 39). In this model the

subscript ¢ denotes the observation number. This model is typically denoted as

Yi = Bo + brxi + € (3.1)

or

E (y:) = Bo + brz;. (3.2)

The error term, g;, for each observation ¢, is a random variable which explains the random
variation or noise in the outcome y;. The errors are assumed to be independent, normal
and identically distributed random variables with an expected value of zero and a constant
variance, that is ¢; ~ N(0,02) . The normality in the errors implies normality in the
response variable, y;, which is continuous (Seltman, 2012, p. 215).

The distribution of the population of possible values for y; at z; has mean By + Bix; and

2

constant variance o”. In general for each different value of the explanatory variable a

separate distribution of responses exists such that its form is the same (their distributions are
identically distributed) and their variances are the same but their means differ (Christensen,
2011, p. 346).

The fundamental idea underlying a linear regression analysis is that the expected response

is linear in the parameters (Seltman, 2012, p. 214).

3.3.3 The General Linear Model

The simple linear regression model represented by Equation 3.1 is extended to the multiple
linear regression case to include multiple explanatory variables. This model is known as the

general linear model. For responses Y1, ...,Y,, this can be written as

E(Y) =B+ Bix1+ -+ Brxg (3.3)
or
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where

Y1
Y =
Yy
is a vector of responses,
1 11
X pr—
1 Tnl
is termed the design matrix and
B
B=1:
Bk

is a vector of parameters.

£C1p

X is often termed the design matrix. This matrix consists of constants representing levels of

categorical explanatory variables or the measured values of continuous explanatory variables

(Dobson and Barnett, 2008, p. 37). For a continuous variable, for example temperature,

the model has a linear component fB;x; for the i*" observation where the parameter or

coefficient represents the change in the response Y; corresponding to a one unit change in

x; when all other explanatory variables are kept constant. For categorical variables, instead

of representing a measured constant value in the dependent variable, parameters are coded

for different levels of the factor. These elements are chosen in X so as to include or exclude

appropriate parameters for each observation and are known as dummy variables. If variables

are only zeros or ones they are called indicator variables (Dobson and Barnett, 2008, p. 37).

Consider the function g on the vector of expected responses in Equation 3.5,
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gBEY)=| | (3.5)

Note that the same function, g, applies to every element in the vector. This function, g,
is needed in cases when the response data are not linear. For example when the response
data are not continuous but discrete. Typically discrete data consist of counts or binary
responses. Consider the problem of modelling temperature against malaria risk as a binomial
proportion. In the simple linear model framework the intensity of malaria risk, which ranges
between 0 and 1, is assumed to be a linear function of temperature. This assumption would
be incorrect as this relationship is not linear given the binary nature of the response variable
(Dobson and Barnett, 2008, p. 46). The variability of observations around the mean cannot
be thought to vary about the mean according to a normal distribution (Christensen, 2011,
pp. 12-14). This function g is called a link function. It preserves the linear structure of the
model (Dobson and Barnett, 2008, p. 46). Its workings will be discussed in Section 3.3.7.

3.3.4 The Bernoulli Distribution

The Bernoulli distribution is defined for a variable that is binary or dichotomous in that
the variable has one of two possible outcomes (Dobson and Barnett, 2008, p. 53). A binary

random variable S is defined as

1 if the outcome is a success

0 if the outcome is a failure

with probabilities

P(S =1) = mand P(S =0) = 1—m, that is S ~ Bernouli(w). If there are n such
independent Bernoulli random variables S;, ..., S, with Pr(S; = 1) = m, then the sum of

these events,

Y — Z S;, (3.6)

denotes the number of successes in n independent trials (Dobson and Barnett, 2008, p. 48).
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3.3.5 The Binomial Distribution

The random variable Y denotes the sum of n independent Bernoulli trials where each prob-
ability of success, 7, is the same for each trial, that is Y is composed of n Bernoulli experi-
ments. Y has a Binomial distribution (Dobson and Barnett, 2008, p. 48). The probability

of obtaining y successes and n — y failures is then given by

Pr{Y =y} = (Z) 1 —m)"Y, y=0,1,...,n. (3.7)

The combinatorial coefficient is the number of ways of obtaining y successes in n independent

trials. The mean of the Binomial distribution for Y is given by

EY)=p=mn

and the variance is
Var(Y) =o? = n(1 — 7).

3.3.6 Bernoulli and Binomial Models for Count Data

Consider the context of predicting malaria risk using point-referenced malaria prevalence
data. This kind of spatial data is described in Section 3.2.2. Define N random variables,
that is Y7, ..., YN corresponding to the number of infections at site i. These data are count
data. At each site ¢ in the study area, as shown in Figure 4.1 in Chapter 4, there is a count
of the number of people infected with malaria as well as the number who were examined.
That is,

Y; = number infected at site 7 and n; = number examined at site 7.

The random variable Y; can take the values 0, 1, ...,n; associated with site 7. If one person
was examined at site i, he/she would be either infected or not infected with malaria. This
binary response would describe one Bernoulli trial. If more than one person was examined
at each site, site ¢ consists of the sum of the independent Bernoulli trials, as shown generally

in Equation 3.6.

The n; observations at each site are assumed to be independent. Each site has the same

exposure to explanatory variables as per the creation of the spatial database, that is only one
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measure for each explanatory variable is associated with a site. Thus at site ¢ all n; have the
same probability, m;, of having the attribute of interest namely, malaria infection. It follows
that the distribution of Y; is Binomial with parameters m; and n;, that is Y; ~ Bin(n;, m;).

See Section 3.3.7.1 for a continuation of this problem.

3.3.7 Generalized Linear Models

When the response variable Y is normally distributed the linear model, as described in
Section 3.3.3, is appropriate. However when the response is not normal, or when the data can
not be coerced by transformation to be normal, the normality assumption is not appropriate.
This is typically the case for the malaria count data considered in this study (Finley et al.,
2007). As highlighted above, the binomial model is particularly unsuitable for a linear
response model since probabilities are bounded on both ends (they must be between 0 and
1). Hence it is often more meaningful to model a function of the mean as opposed to the
mean itself, in this case to ensure that the mean of Y (which is a probability) is between 0
and 1, as a linear combination of the unknown parameters 8 (Gotway and Stroup, 1997).
A central assumption in the linear model is that the variance should be constant. In count
data where the response variable is an integer and often takes the value 0, the variance will
likely increase with the mean (Nelder and Wedderburn, 1972) thus violating the constant

variance assumption.

Generalized Linear Models were first introduced by Nelder and Wedderburn (1972) as an
extension of the general linear model for analyzing data from non-normal distributions.
Consider the random variable Y that has probability density function (pdf), f(y;€), which
depends on parameter 6. If f(y;0) takes the following form

f(y;0) = s(y)t(0)exp(aly)b(8))

or equivalently after rearranging (Dobson and Barnett, 2008, p. 46)

f(y;0) = exp(a(y)b(0) + c(0) + d(y)), (3.8)

where ¢(0) = In(t(6)) and d(y) = In(s(y)), then f(y;0) is said to belong to the exponential
family of distributions (Barndorff-Nielsen, 1978, p. 107). Here,

e b(#), according to Dobson and Barnett (2008, p. 46), is called the natural parameter

and is a function dependent only on 8;

23



e ¢(f) is a function dependent only on 6;

e d(y) is a function dependent only on y.

The expected value and variance of a(Y') can be expressed as

Ela(Y)] = — (3.9)
and

b"(0)(0) — " (0)V (6
Varla()) = OO L OV0)

(3.10)

respectively (Dobson and Barnett, 2008, p. 49). The distributional form in 3.8 is called
canonical if a(y) = y. When the distribution is in canonical form 3.9 and 3.10 are the mean
and variance for Y respectively. Working with an exponential family distribution in the
canonical form is analytically convenient. Once in this form the pdf of Y can be rewritten
the in terms of a single parameter, that is Y depends on a single parameter, § (Dobson and
Barnett, 2008, p. 51).

Consider a set of independent random variables, Yi,...,Y,, from the exponential family
of distributions (Equation 3.8) and a set of explanatory variables, x1,...,X,, where each
X; = (xi1,...,xip) is a vector of length p. The expected value, p;, of Y; is modelled as a

linear function of explanatory variables, x;, employing the following transformation

m=g(w) = x; B3, (3.11)

where ¢g(.) is called the link function and is monotonically increasing in p;, that is the
transformation of the explanatory variables is either strictly increasing or strictly decreasing.

The mean function is given by

i = €$p(XiTﬂ)-

The link function relates the linear predictor to the mean. When b(¢) in Equation 3.8 is
equal to the linear predictor 7;, the link function g(.) in 3.11 is then known as the canonical
link. A special case of the generalized linear model is the linear regression model where an
identity link

9(w) = p=x; B, (3.12)
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is used (refer to Section 3.3.7 on the general linear model). The binomial distribution can
be employed to model count data, that is when Y; ~ Bin(n;, ;). The Binomial logistic

regression model is obtained via the logit link,

o) =tog (1) =x1. (3.13)
that forces p; to be between 0 and 1. The identity link shown in 3.12, which has no
transformation on the explanatory variables, is the general linear model, E(Y) = [y +
Bix1 + -+ + Brxk, (Equation 3.3). This model will not work because the mean response,
E(Y'), must take values between 0 and 1. By construction the transformed mean function

of Equation 3.13 forces the response to be between 0 and 1, as required.

The binomial distribution belongs to the exponential family of distributions in the canonical

form since the pdf given by Equation 3.7 can be expressed as

= exp (yilog (1 flﬂ) + nilog(1 — ;) + log (Zl)>

where a(y;) = i, b(m) = log(17), c(mi) = nlog(l — m;) and d(y;) = log(Zj). From

Privi = )= (M)t myn

Equation 3.9, the expected value of Y; is given by

The canonical link typically used is the logit link:

Uy

g(m;) = logit(m;) = log(~——) = x['8 (3.14)

1—m

where the logit link maps probabilities from the open interval (0,1) to the whole real line.

The likelihood function for independent responses Y7,...,Y, in the canonical form of the

exponential family of distributions can be written as
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L(0;y) = [ Jexp(yid(0:) + c(6;) + d(w:))

and the log-likelihood function, log(L(8;y)), is given by

(6;y) =D wib(6:) + Y () + > dyi).

The global maximum of the log-likelihood function [(0;y) is given uniquely by solving % =0

or g—é = 0 under certain regularity conditions (Cox and Hinkley (1979) as cited in Dobson

and Barnett (2008, p. 74)).

3.3.7.1 Binomial Model for Count Data in a Spatial Context

GLMs focus on analyzing the linear relationship between the transformation of the expec-
tation of the response variable, via a link function, and the explanatory variables. It is
assumed that the observations are independent (Dobson and Barnett, 2008, p. 51). Spatial
data are typically spatially correlated (Diggle and Ribeiro, 2007, p. 30). This means that
the GLM should be modified to incorporate the spatial dependence that is often inherent
in spatial data. The spatial section of this thesis, in particular Section 3.6.4, will show how

this can be done.

3.4 Goodness of Fit Statistics

3.4.1 Akaike’s Information Criterion (AIC)

The likelihood function, L, can be defined as the probability or likelihood of the data given
a model. Define p as the number of free parameters in the model. The Akaike Information
Criterion (AIC) (Akaike, 1973) is defined as

AIC = —2In(L) + 2p (3.15)

The AIC model selection method is used in this study. The AIC is a criterion that looks
for a model that has a good fit but with few parameters (Dobson and Barnett, 2008, p.
137). The goodness of fit of a statistical model is determined by how well it fits a set of
observations (Jha et al., 2011). Under the AIC criterion, the model with the best fit is the
one with the smallest AIC. The AIC penalizes the fitted value of —2In(L) (a positive value),
and adds a penalty that depends on the number of fitted parameters, as shown in Equation
3.15.
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3.4.2 Cross-Validation

Cross-validation involves splitting the data at random into two sets, namely a modelling
or derivation set and a validation subset (Hyndman and Koehler, 2006). Model building
proceeds on the derivation set. The goodness of fit of a model can be assessed by summarizing
the discrepancy between observed values and the values expected given the model (Craig
et al., 2007). Two such measures of goodness of fit are the mean prediction error (MPE)
and the absolute mean prediction error (AMPE) (Hyndman and Koehler, 2006). Following
the convention of Zeng et al. (2013); Noor et al. (2014), the MPE, given by

1o )
MPE = EZ(yi_yi)
i=1

and the AMPE, given by

n

1
AMPE = - P
n;!(y vi)|

is used in this study to assess the accuracy of predictions between the non-spatial and spatial

model at validation sites.

Another common cross-validation measure (Valle, 2011) is the mean squared prediction error
(MSPE) given by

1< R
MSPE = — > (i — i)
=1

3.5 Non-spatial Model Selection Procedure

A staged variable selection procedure employed by Craig et al. (2007) will be implemented in
this thesis. Craig et al. (2007) note that variable selection is a major obstacle in spatial mod-
elling due to analytical problems caused by over-fitting, confounding and non-independence
in the data. These authors argue that although spatial dependence in the response data has
been modelled successfully using Bayesian spatial modelling, variable selection remains an
issue of concern. Variable selection can affect the predictions greatly especially when faced
with a large number of potential risk factors (Craig et al., 2007). In order to establish which

variables should be included in the spatial analysis, a systematic, practical and repeatable
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staged process of variable elimination is adopted. Following the study by Craig et al. (2007)
all the available explanatory variables are split into climatic and environmental themes in
which collinearity among variables is tested per theme. In the current study, these themes in-
clude a rain, a temperature and a NDVI theme. Unthemed variables include variables which
do not fit into rain, temperature or NDVI themes. In this study, the unthemed variables
are not tested for collinearity because they are deemed unrelated. The reference study had
more themes and variables and were able to allocate a theme to all variables. The process
includes a stepwise bootstrap method described by Austin and Tu (2004). Following this
variable selection process, the resulting smaller subset of variables are fitted in a Bayesian
geostatistical model so as to achieve the primary aim, which in the context of this study
is mapping historical malaria prevalence data and making predictions at unsampled sites
across Botswana. This variable selection process involves 6 stages. Each stage will here be
described in detail.

3.5.1 Stage 1

In Stage 1 the dataset is split randomly into derivation and validation subsets. Univariate
logistic regression is used to identify the best univariate predictors using the derivation data
and all the potential explanatory variables. If an explanatory variable is insignificant at the

5% level of significance, it is excluded.

3.5.2 Stage 2

In Stage 2 the variables that were significant in Stage 1, are ranked based on each model’s
AIC score. Those variables that are strongly correlated with each other, Spearman’s r > 0.85,
with higher-ranking variable /s belonging to the same theme are excluded. Individual scatter

plots of the remaining variables against logit(p), the logistic response, are then prepared.

3.5.3 Stage 3

Stage 3 involves running 1 000 bootstrap samples from the derivation data and running
an automated backward exclusion procedure on each sample, that is automated backwards
stepwise elimination in conjunction with bootstrap resampling (Austin and Tu, 2004). The
automatic backward exclusion procedure involves starting with all candidate variables, test-
ing whether each variable should be deleted using the AIC criterion, deleting the variable,
if any, that improves the model the most by being deleted and continuing this process until
there is no further improvement possible. In each bootstrap iteration, the coefficients and

the frequency with which each candidate variable is selected are recorded.
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3.5.4 Stage 4

In Stage 4 a non-spatial multiple variable model is derived in a manual forward stepwise
fashion. This process starts by including the most frequently selected variable in Stage 3
and adding further variables in order of selection frequency. The manual forward stepwise
regression continues as long as all entered variables remain significant at the 5% probability
level. If a previously entered variable becomes non-significant with the inclusion of another
variable, this process keeps the variable that was more frequently selected in Stage 3 above
the other.

3.5.5 Stage 5

Stage 5 involves revisiting those variables that were excluded in Stage 2 because of high
correlation. Excluded variables from Stage 2 are allowed to re-enter the Stage 4 candidate
list of variables in a stepwise-bootstrap sample per theme, recording selection frequency as
above. This stepwise-bootstrap procedure is the same procedure used in Stage 3. If the
added variable is significant in the bootstrap sample and selected more frequently than the
original variable in the Stage 4 candidate list, then the added variable replaces the original
variable. Otherwise the original variable in the Stage 4 candidate list remains. This modified

model is the non-spatial model.

3.5.6 Stage 6

In the final stage, Stage 6, the explanatory variables from Stage 5 are incorporated into
a generalized geostatistical spatial model (or a SGLM model) using MCMC simulation
methods. The details of Stage 6 will be discussed in the spatial modelling section (see

Section 3.6 on the following page).

3.5.7 Implementation of Stage 2 of the Non-Spatial Variable Selection
Procedure in R

Initially all of the above stages were performed manually. This took a lot of manual work,
particularly Stage 2. Therefore, the Stage 2 process was automated in a loop as shown
below. The terms used in the psuedocode and the psuedocode are given below (refer to code
lines 511 to 646 in the appendix of Chapter 5):

e DF: Themed dataframe in which the order of univariate AIC rankings is preserved

from lowest to highest);
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e N: Number of variables in DF;

e X: Proposed variable (first variable in DF);

Y: Variable/s correlated with X ;

Condition 1: X not correlated with remaining variables in theme;

List1: List of variables kept. The variable tested is always kept because by design it

has the lowest univariate AIC ranking;

e List2: List of variables removed.

while N > 1 do

invoke correlation test function;
add X to Listl;

if Condition 1 then

add NA to List2;

remove X, Y from DF;

else

add Y to List2;

remove X, Y from DF;

end

end

Algorithm 1: Iterative algorithm to keep track of which variables are correlated with each

other and which are kept and removed based on AIC rankings

3.6 Spatial Modelling

3.6.1 Overview

Spatial data contain information about both the attribute of interest as well as its location.
Examples are found in ecology, geology, epidemiology, geography, image analysis, meteo-
rology, forestry, and geosciences (Haran, 2011). Refer to Section 3.2.2 on page 14 for a
description of the type of spatial data used.

The spatial component of the Botswana case study that will be presented in this thesis will
draw on Bayesian geostatistical methods described and implemented by Craig et al. (2007),
Gosoniu et al. (2006), and others; and pioneered by Diggle et al. (1998). In particular Stage
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6 of the process will be discussed. This section will start by giving some background on
spatial data, in particular the kind of spatial data we are dealing with, namely geostatistical
data. Guided by Diggle et al. (1998), common objectives in spatial geostatistical modelling
will also be discussed, including an example of what typical geostatistical data looks like.
The theory behind linear gaussian random field models for geostatistical data is discussed,
followed by details of the Bayesian framework used for estimation and prediction. Finally

details on the Bayesian implementation of the spatial model in R will be given.

3.6.2 Spatial Statistics

A key property of spatial statistical analysis is that it is assumed that the data are auto-
correlated in that observations in close proximity tend to be related or more similar than
observations that are far apart. This assumption is known as Tobler’s first law of geogra-
phy: “Everything is related to everything else, but near things are more related than distant
things.” (Tobler, 1970).

Spatial statistical methods incorporate spatial correlation according to the manner in which
geographical proximity is defined (Gemperli, 2003). Proximity also depends on the geograph-
ical information, which is either at an aggregate area level (areal) or at a point-location level.
Areal unit data are aggregated over contiguous units partitioning the whole study region.
Their neighbouring structure defines proximity in space. Point-referenced or geostatistical
data are collected at fixed locations, for example households or villages, over a continuous
study region (Gemperli, 2003). In geostatistical data the distance between sample locations
determines proximity (Gemperli, 2003). Work done by Krige (1951) and Matheron (1963)
laid the foundation for this field of study. Geostatistics can be viewed as a hybrid of statis-
tics, mathematics, mining engineering and geology (Bolin, 2009). It has become a branch
of statistics that specializes in the analysis and interpretation of geographically referenced
data (Goovaerts, 1997, p. 3). Many geostatistical methods are fundamental in spatial data
analysis (Bolin, 2009). Cressie (1991, p. 8) views geostatistics as one of the three scientific
fields specialized in the analysis of spatial data. The other two are point pattern analysis,
which deals with point objects, and lattice statistics or areal analysis, which deals with
pixel data. Point pattern analysis is concerned with where events of interest occur. A fun-
damental question in this type of spatial analysis is whether or not the points of interest
occur at random, or whether or not there is evidence of clustering, or patterns of regularity.
Lattice statistics typically requires data at a regularly spaced set of points. Irregular lattice
type data is also possible. Lattice data are typically in the form of pixels. Pixels are small
rectangularly shaped regions, which are often the result of remote sensing from satellites or

aircrafts. The observed data in lattice statistics are typically aggregations within boundaries
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of interest, such as population counts. The three scientific objectives of geostatistics (Diggle
and Ribeiro, 2007, p. 12) are:

1. Model estimation, that is estimation of the the model parameters;
2. Prediction, that is prediction of the unobserved values of the target variable;

3. Hypothesis testing.

Most applications are concerned with the first two objectives (Diggle and Ribeiro, 2007, p
.12). Estimation deals with inference about the parameters of a stochastic model for the data.
Generally, a stochastic model is comprised of a family of random variables running over a
suitable index (Pinsky and Karlin, 2010, p. 4). In a geostatistics context the random variable
is the spatial process at work at each sample site. The sample sites denote the index. These
concepts will be discussed further in the subsequent section. Following estimation, one can
focus on prediction and/or hypothesis testing. Parameters of direct scientific interest such
as those defining a regression relationship between a response and an explanatory variable
may be explored, or parameters of indirect interest, such as those defining the covariance

structure of a model may also be explored.

Spatial prediction refers to the prediction of unknown quantities, Z(sp), based on sample
data, Z(s;), and assumptions regarding the form of the trend of Z and its variance and
spatial correlation. Hypothesis testing can also appear in geostatistical problems, although

it is typically not a primary concern (Diggle and Ribeiro, 2007, p. 13).

3.6.3 Geostatistics

Geostatistics is concerned with the analysis of random fields, Z(s), with Z random and s
the non-random spatial index. A random variable measured at a set of locations is called
a random field (Cressie, 1991, p. 8). A random field is a generalization of a stochastic
process in that the underlying parameter takes values that are multidimensional vectors, or
points on some manifold or two-dimensional surface in three-dimensional space (Adler, 2004).
Typically analysis occurs at a limited number of sometimes arbitrarily chosen locations
(Diggle and Ribeiro, 2007, p. 10). Variability in the measured response is a result of the
random realization of the spatial field, not the randomness of the sampling locations. Thus
two sources of variation should be distinguished, namely the spatial variation underlying the
target surface, that is the random realization of the spatial field and the statistical variation
given that surface (Diggle and Ribeiro, 2007, p. 3). Measurements on Z at these sample

locations are available, and prediction and interpolation of Z is required at non-observed
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locations Sy, or the mean of Z is required over a specific region, By. Geostatistical analysis
deals with the estimation and modelling of spatial correlation or covariance or semivariance
and evaluating whether simplifying assumptions such as stationarity can be justified or need
refinement (Bivand et al., 2008, p. 192). The problem can be defined more explicitly as
follows: let a set of observations of a target variable Z be denoted as z(s1), z(s2), ... ,2(Sn),
where s; = (x;,y;) is a location and z; and y; are the measured coordinates in geographical
space and n is the number of observations. The geographical domain of interest, for example
area or land surface or object, can be denoted as D. Only one reality or realization of a
process (Z = Z(s),Vs € D) is assumed. The domain is in continuous space so this process
could have created many realities, that is the number of locations at which observations can
be made is not countable. In most applications the random field is assumed to be Gaussian
or normal and hence statistical properties are completely determined by the mean value
function, p(s) and the covariance function, C(s;,s;) = C(||s; — s;||) (Diggle and Ribeiro,
2007, p. 47). A Gaussian random field is a Markov random field of continuous states and
with a joint Gaussian distribution over those states (Riedl et al., 2010). Markov processes
are discussed in Section 3.6.5 on page 38. The form of the covariance function should be
chosen so as to fit the particular dataset. Stationarity of the covariance function is often
assumed in order to simplify calculations, such that it is a function of distance between
points only. Further simplifying assumptions are also sometimes made where one assumes
that the covariance function only depends on distance and not direction. The covariance

function and random field are then called isotropic (Bolin, 2009).

3.6.3.1 An example of Geostatistical data- Rongelap data

These data was first analyzed by Diggle et al. (1998). It was collected from Rongelap Island
in the South Pacific, which forms part of the Marshall Islands in America. Nuclear weapon
testing generated heavy fallout over the island in the 1950’s and since 1985 it has been
uninhabited. The Rongelap Island data consists of 157 sampling locations. It is based on
a sampling design which consists of a primary grid covering the island at a spacing of 200
meters and four secondary 5 by 5 sub-grids at a spacing of 50 meters. At each location,
photon emission counts that are as a result of radioactive caesium were measured. The data
have the form (x;,m;,t;) 14 =1,...,157, where x; denotes spatial location, m; denotes the
photo emission count at that location, and ¢; is the time (in seconds) over which m; was
accumulated (Diggle et al., 1998).

Using the observed emission counts per unit time % as a response variable z;, the Rongelap
7

data can be transformed into the basic format of geostatistical data,
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(xi,2):i=1,...,n

where each z; = 7 is a realization of a random variable Z; whose distribution depends on
an underlying unobservable spatially continuous stochastic process Z(x). The set of values
Z(x),x € D, where D is the domain in continuous space, can be understood as one draw in

an infinite set of random variables (Diggle and Ribeiro, 2007, p. 9).
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Figure 3.1: Circle plot for Rongelap island data. Circles represent sampling locations and
radii are proportional to observed emission counts per unit time. The unit of distance is
1 metre. The broken lined box represents an enlargement of the western extremity of the
island.

3.6.4 Linear Spatial Models

GLMs, as discussed in Section 3.3.7 on page 23, focus on analyzing data under the assump-
tion that the observations are independent. As discussed above spatial data typically violate
this assumption. This means that the dependence structure underlying the spatial data is
some function of location information and must be accounted for. It is well known that
ignoring spatial dependence in the data when employing regression models will result in

biased estimates of variation and inefficient statistical inference (Cressie (1991) as cited in
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Li (2008)). The GLM can be extended to accommodate dependent responses by introducing
unobservable random effects into the linear predictor. As a result the model specification of

the logit function of a GLM in Equation 3.11 on page 24 is modified to

n; = X?@ + w;,

where w = (wy,...,w,) follows a zero-mean multivariate distribution. The w; are called
random effects (Diggle and Ribeiro, 2007, p. 80). The random effects relate to the variance
component of the model, that is, the random effects explicitly models the between-subject
variation in the data (Dobson and Barnett, 2008, p. 221). This kind of model is typically
called a spatial generalized linear model (SGLM) or a spatial generalized linear mixed model
since the specification of spatial dependence via a generalized linear model framework always
involves random effects (Breslow and Clayton, 1993; Lee and Nelder, 1996; Haran, 2011).
Typically, w is specified as a multivariate Gaussian random variable with a particular co-
variance structure imposed in order to describe the spatial dependence or error structure in
the data (Diggle and Ribeiro, 2007, p. 80).

Considering sample sites s = s1,... Sy, in this class of models w(s) = (w(s1),...,w(sy))
is a stationary Gaussian process. This process is stochastic and is a Gaussian model if the
joint distribution of w(sy),...,w(sy) is multivariate Gaussian for any integer n and set of
locations s;. The process is stationary if the expectation of S(x) is the same for all x, the
variance of S(x) is the same for all x and the correlation between S(x;) and S(x;) depends

only on u = ||x; — X,|| , the Euclidean distance between x; and x;.

Linear Gaussian random field models for geostatistical data will be discussed, both for
normal data and count data. Diggle and Ribeiro (2007, p. 80) proposed and described how
the spatial dependence or error structure for SGLMs can be modeled via Gaussian processes

for point-level, geostatistical data.

3.6.4.1 Linear Gaussian Process Models - Normal Case

As discussed the domain is a continuous space, that is these two spatially continuous stochas-
tic processes could have created many realities. Let the spatial process at locations s € D,

where D is the domain of interest, be defined as

Z(s) = X(s)' B + w(s), fors € D, (3.16)

where Z(s) is the response vector as a function of sites, s, such that Z = (Z(s1),...,Z(sn)),

X(s) is the set of explanatory variables associated with each site s;, and {3 is a p-dimensional

35



vector of coefficients. Spatial dependence can be imposed by modeling {w(s) : s € D} in

Equation 3.16 as a zero-mean multivariate stationary Gaussian process specified by

w(s) = MVN(0, (@)), (3.17)

where ¥(0) is the variance-covariance matrix of the n-dimensional normal density with
unknown parameters, namely the spatial decay, ¢ and variance, o2. In order for the distri-
bution given by Equation 3.17 to be proper ¥(®) must be symmetric and positive definite.
If 3(O) is specified by a positive definite parametric covariance function, these conditions
are satisfied (Haran, 2011). The covariance function for a pair of locations, s; and s;, sepa-
rated by the Euclidean distance, h, can be written as a product of the variance parameter

o2 and a positive definite correlation function

p(h) = C(h) = a®p(h).

The exponential correlation function is a positive definite correlation function and takes the

following form

p(h) = exp(—oh). (3.18)

The exponential correlation function is a special case of the more flexible Mafern family
(Handcock and Stein, 1993). This covariance structure assumes that the covariance and
hence dependence between two locations decreases as the distance between the locations
increases, that is for small distances the correlation between sites is large and decreases as

distance increases. The Matern correlation function is specified as follows

P) = oy (OM) K (0h)

where v is known as the smoothness parameter and K,(x) is a modified Bessel function
of order v (Abramowitz and Stegun, 1964, p. 358). K,(x) controls the smoothness of the
function. As v increases, the process becomes increasingly smooth (Haran, 2011). The
Matern correlation function reduces to the Exponential correlation function when v is an

integer plus 3 (Genton, 2002).

Stein (1999) (as cited in Haran (2011)) recommends the Mafern structure because it is
flexible enough to allow the smoothness of the process to also be estimated. This author

cautions against Gaussian process models with gaussian correlations due to the fact that
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they are overly smooth, that is they are infinitely differentiable. Generally the smoothness,
v, may be hard to estimate from data (Haran, 2011). A popular default is to use the
exponential covariance structure for spatial data where the physical process yielding the
realizations is not likely to be smooth and a gaussian covariance for modeling output from
computer simulations or other data where the associated smoothness assumption may be
reasonable (Haran, 2011).

3.6.4.2 Linear Gaussian Process Models - Binomial Case

In cases where the linear Gaussian assumption provides a poor fit to the data and transform-
ing the data in an attempt to make it normal via, say the Box-Cox family of transformations,

is unsatisfactory, SGLMs can be employed (Haran, 2011).

Let {Z(s) : s € D} and {w(s): s €D}, be two spatial processes on D C R%(d € ZT). Here
it is assumed that Z(s;) conditionally follow a common distributional form, for example
the binomial in this case for count data, and Z(s;) are conditionally independent given

w(s1),...,w(s,) where sq,...,s, € D, and

E(Z(si)|wi) = g{pi(s;)},fori =1,... n. (3.19)

A known link function, g, is chosen as described in Section 3.3.7, so that n(s) = g{u(s)},
for example where g(.) is the logit link (see Equation 3.14). Further assume that

Si
1—51'

n(s) =X(s)"8 +wl(s), (3.20)

where X(s) is a set of p explanatory variables corresponding with each site s, and 3 is a p-
dimensional vector of coefficients. Spatial dependence is handled by modelling {w(s): s €D}
as a stationary Gaussian process, that is w = (w(s1),...,w(s,))? is a multivariate normal

distribution defined as per Equation 3.17.

Notice the identity link function is used in Equation 3.16 for the normal conditional distri-
bution of Z(s). This result in the normal case, described in Section 3.6.4.1 is obtained as a

special case (Haran, 2011).
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3.6.5 Hierarchical Bayesian Inference and Estimation
3.6.5.1 Overview

Statistical inference is the process of making decisions about some unknown aspect of the
population from which the data were drawn (Christensen, 2011, p. 131). With respect to
the current study, interest lies in making inference on unobserved sample points, that is,
sample sites in the derivation set of the data. In a frequentist paradigm the estimation
of @, which is treated as a fixed unknown quantity of interest, typically proceeds via the
maximum likelihood approach which is based on a model for data f(y|@). Inference is
then based on the notion of repeated sampling. The distribution of the MLE 6 induced by
repeatedly sampling of the data is considered under identical conditions as n approaches
oo. The concept underlying Bayesian spatial modeling is Bayes’ theorem (Gelman et al.,
2014, p. 8). In this theorem both the distributions of the data and the unknown coefficient

estimates are considered.

Bayesian inference works by assigning or fitting a probability model to the observed data.
The results are summarized by a probability distribution on the unknown parameters 6 or
unobserved data y. In the Bayesian paradigm inferences are made in terms of probability
statements conditional on the observed data y (Gelman et al., 2014, p. 1). The Bayesian
paradigm offers attractive advantages over the frequentist approach for modeling spatial data
(Banerjee et al., 2004, p. 97). This point can be made by noting four distinct advantages
as highlighted by Banerjee et al. (2004, p. 97).

1. The Bayesian method allows the modeller to model spatial correlation explicitly among

random effects through prior distributions;

2. The marginal likelihood function can be complex and multidimensional and is gener-
ally not tractable in closed form and must be approximated numerically, which can
be computationally difficult. MCMC simulation methods in a Bayesian setting can
be used to overcome difficulties associated with computing posterior distributions as

discussed in Section 3.6.5.3 on page 42;

3. It is possible to specify a complicated model for non-Gaussian data, as in the malaria
count data presented in this thesis, in a hierarchical Bayesian fashion. In this way the
data and parameters of interest can be specified through different layers which can be

easily understood and computed;

4. In a Bayesian setting the uncertainty of the model and parameters is explicitly taken

into account.
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In addition, in conventional frequentist geostatistical interpolation when the response data
is Gaussian the covariance structure is estimated first, and then the estimated covariance is
used for interpolation and, unlike in the Bayesian approach, the effect of the uncertainty in
the covariance structure on subsequent predictions is often ignored (Stein (1999) as cited in
Li (2008)).

3.6.5.2 Bayesian Inference Framework

A Bayesian statistical model is composed of a sampling distribution, namely the likelihood
function denoted by p(y|0), for the observed data conditional on the unknown parameters 6,
and a prior distribution denoted by p(80) (Everitt, 2002, p. 36; Gelman et al., 2014, p. 1). The
prior distribution is a reflection of the degrees of belief on the likely values of the unknown
parameters (Everitt, 2002, p. 313). With these two distributions, the joint distribution, also

known as a full probability model, can be written as

p(0,y) = p(y|0)p(0)

and, via Bayes’ rule (Everitt, 2002, p. 36; Gelman et al., 2014, p. 1), the posterior is obtained

as follows

p(6.y) _ p(y|0)p(6)
p(Oly) = = 3.21
6l) p(y) p(y) (32

where p(y) = > p(y|0)p(0) for discrete 6 and for the continuous case p(y) = [ L(y|0)p(0)d6.
Because p(y) does not depend on 6 it can be considered a constant with fixed y and can
thus be factored out and Equation 3.21 can be obtained up to a normalizing constant that

is proportional to the likelihood function times the prior written as

p(0ly) < p(y|0)p(6). (3.22)

Equation 3.22 ensures that model estimation using numerical methods (see Section 3.6.5.3
on page 42) are easier since computing the normalizing constant, which is not easy to obtain,

is avoided.

Hierarchical modeling results from a simple fact from probability, namely that the joint
distribution of a collection of random variables can be decomposed into a series of condi-
tional models (Arab et al., 2008). For example, consider random variables a,b and ¢. Basic

probability allows the factorization:
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[a7 b, C] = [a’b7 C] [b’C] [C],

where the notation [.] is used to denote a probability distribution (Arab et al., 2008). In this
way complex models can be built through the specification of several simple stages. Bayesian
hierarchical modelling involves setting up a multi-level stochastic model. Such structuring
of the model is well-suited for incorporating a priori knowledge, allowing prior knowledge to

be inserted at various levels of the modeling, where appropriate.

More specifically, a hierarchical Bayesian model (Gelman et al., 2014, p. 101) involves
decomposing the prior probability distribution, p(@), into several conditional levels of dis-

tributions:

4! (9|91),p2(91|92), e ,pn(9n|9n71)

and a marginal distribution

pn+1(9n)

such that

p(8) = / p1(0101)p2(0118) .. pu(On |01 )pus1(6,)A61 ... 0.
O1X--XOp

The parameters, 6;, are called hyperparameters of level i, for 1 < i < n. Hyperparameters
are the parameters of the prior distributions to distinguish them from parameters of the
model of the underlying data. In most hierarchical Bayesian problems the number of levels,
n, is equal to 2 (Gelman et al., 2014, p. 101). At the first stage, a likelihood function for
the data given the parameters is specified. At the second stage the prior distributions for
the parameters given the hyperparameters are specified and distributions for the hyperpa-
rameters are specified at the third stage. The first stage can be defined as the data-level
uncertainty as it is made up of the study-specific likelihood that may, for example, incorpo-
rate uncertain linear restrictions on the parameters of a regression model, whereas the prior
distributions at the second level correspond to the more subjective information that accounts
for the imprecision or uncertainty at the first stage (Raudenbush, 2002, p. 415). Hierarchi-
cal modeling improves the robustness of the resulting Bayes estimators, since uncertainty
regarding the model structure can be incorporated into additional prior distributions (Rau-

denbush, 2002, p. 415). The decomposition of the prior distribution into its components
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simplifies Bayesian computation and facilitates a simpler and more intuitive approximation

of posterior quantities by simulation (Raudenbush, 2002, p. 415).

The choice of prior distribution is critical for Bayesian inference, especially when the sample
size is small or when the sample is sparse (Gelman et al., 2014, p. 167). Prior information
from external experts in a field can be incorporated in the construction of a prior distribution
for the unknown parameters, although the process of converting prior information to prior
probability distributions is often not clear (Winkler, 1967). Prior information will also typ-
ically not yield a unique prior distribution. When there is little prior information regarding
model unknowns, as is often the case, a noninformative or vague prior distribution can be
employed. These priors typically are from a parametric distribution with large or infinite
variance, thus expressing the associated uncertainly or lack of knowledge (Winkler, 1967).
For large data sets the likelihood will dominate the prior, and inference will be primarily
data-driven and so such an approach is reasonable. For small data sets however, inference
will be far more sensitive to prior choice and more caution is needed in specifying the priors
(Winkler, 1967; Li, 2008). An important aspect of Bayesian modelling is the notion of a
conjugate prior (Gelman et al., 2014, p. 36). A prior is called a conjugate prior when the
posterior distribution follows the same parametric form as the prior distribution. Probabil-
ity distributions belonging to the exponential family of distributions always have conjugate
prior distributions (Gelman et al., 2014, p. 36).

Suppose f(y|@) are from the exponential family of distributions with the form as in Equa-
tion 3.8 on page 23 for ¢ = 1,...,n. The likelihood function for a random sample is given
by

L(y,0) = ¢(y)t(0)" exp(w(y)b(B)),
where

o(v)=[Istw) and  wly) = ()

i=1 =1

If the prior distribution is specified as

p(8) o £(8)"exp(b(8)v),

then the posterior distribution is given by

p(Bly) o £(8)" eap(b(6)(w(y) + v))
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which has the same density form as the prior distribution. This choice of prior density is

conjugate and is often called the natural conjugate prior (Gelman et al., 2014, p. 44).

In the current context we can envisage a three stage hierarchical specification (Bernardo,
1996):

At the first stage the likelihood is conditional on the spatial random effects

Level 1 : Z(s)|u(s) ~ Bin(u(s))

with g(u(s)) = X (s)” 8 + w(s) where g is the logit link.

At the second stage w(s) provides the process model

Level2 : w(s) | © ~ N(0,%(0©)) (3.23)

At the third stage priors are placed on the parameters

Level 3 : priors on (3, ©),

where © denotes the unknown spatial decay, ¢ and variance, o2 parameters.

3.6.5.3 MCMC Methodology

In general a stochastic process (Gamerman and Lopes (2006) as cited in Li (2008)) can
be defined as a collection of random variables, denoted by (™ € S where n € T. T takes
nonnegative integers and S is called the state space. A discrete-time stochastic process
denoted by {#™ : n > 0} on a countable set S is a set of random variables defined on a
probability space denoted by (2, F, P). The probability space (Loéve, 1955, p. 149) is

made up of:

1. a sample space, €2, which defines all possible outcomes of a random trial;

2. o-algebra F of measurable subsets of {2, where o-algebra F is the collection of events,

F, where each event is a set containing zero or more outcomes and

3. a probability measure, P : F — [0, 1], where 0 < P(A) <1 is the probability that the

event A € F occurs.

The convention of not displaying the probability space (2, F, P) when random variables or

processes are introduced is taken in this study.
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Assume that the state space, S, is discrete for the following discussion. A Markov chain
is a special type of stochastic process in which the past and future states are conditionally
independent given the current state. A stochastic process 8 = {#") : . > 0} on a countable
state space S is a Markov Chain (Serfozo (2009) as cited in Li (2008)) if, for any =,y € S
and n > 0,

P{OTD = 0@ g} = P{o™ D) = g9, }, (3.24)

P{0p11 = ylbn = 2} = P(z,y). (3.25)

P(z,y) denotes the probability that the Markov chain jumps from state x to state y. P(z,y)
is known as a transition probability (Serfozo (2009) as cited in Li (2008)). These transition
probabilities satisfy

1. P(z,y) >0 Vz,y€S;

2. Y yes Plz,y) =1 Vzebs.

The condition denoted by Equation 3.24 is called the Markov property. This property states
that at any time n, the next state X, 11 is conditionally independent of the past Xp, ..., X1
states given the present state X,, (Serfozo (2009) as cited in Li (2008)). Alternatively put,
the next state is dependent on the past and present only via the present state, that is,
the chain jumps around the parameter space remembering only where it has been in the
last period or iteration. The condition denoted by Equation 3.25 states that the transition

probabilities do not depend on the time parameter n.

The matrix, P, for discrete state spaces, S = {1, 22 ...}, with the (i, j)"" element given by
P(z;,x;) is called the transition matrix of the chain (Gamerman and Lopes (2006) as cited

in Li (2008)). If S is finite with r elements the transition matrix, P, is given by

P(zy,z1) ... P(x1,x,)

P=| i
P(xy,z1) ... P(xr,x,)

To arrive at the transition probability from state ¢ to state j over exactly m steps the

matrix product of P m-times is taken and written as P™(z,y) (Gamerman and Lopes

(2006) as cited in Li (2008)). A row vector containing marginal probabilities associated
with realization # is denoted by (™ with components 7(™ (z;) = P(#™ = ;). The
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recursive relationship between successive marginal distributions of the chain can be written
as 7 = g pr=1p — 7z(»=1) P When n = 0 this is the initial distribution of the chain. In
matrix notation the initial distribution is given by 7(" = 7(®) P The probability of an event
A C S for a Markov chain starting at z is denoted by P,(A). The hitting time of event A is
defined as T4 = min{n > 1: 0 € A} if (") € A for n > 0, otherwise T\y = co. Concerning
the state space, S, and the transition matrix, P, two important quantities needed in the
discussion that follows is defined below (Gamerman and Lopes (2006) as cited in Li (2008)):

1. The probability of the chain, starting from state x and in subsequent steps reaching

state y, is denoted by pzy = Pp(Ty < 00);

2. The number of visits of a chain to state y is denoted by N(y) = #{n > 0 : 80 =
y} =300 I1(0™ = y), where T is the identity matrix.

A state y € S is called recurrent if p,, = 1, that is, the chain returns to y with probability
one. A state is called transient if p,, < 1. For a recurrent state y, if E [Ty|0(0)] < 00 where
T, = min {n >1:00M = y} is the hitting time of y, the state is then positive recurrent. This
is an important property for obtaining limiting results. For iterative simulation algorithms,
the asymptotic behavior of the chain as the number of iterations n — co can be considered
the most important area of the Markov chain theory (Gamerman and Lopes (2006) as cited
in Li (2008)).

A distribution, 7r, is called a stationary distribution of a chain with transition probabilities

P(z,y) if

Z‘rr(:c)P(x,y) =x(y) Vyes.

€S

In matrix form this can be stated as w = P. If the stationary distribution 7 exists and

limy 00 P™ (2, 9) = 7 (y),

then the sequence of marginal distributions 7™ will approach 7 as n — oo, whatever the
initial distribution of the chain may be. As such 7 may be referred to as the limiting
distribution. There are cases where stationarity holds but the limiting distributions does
not exist (Gamerman and Lopes (2006) as cited in Li (2008)). In order to establish limiting
results the concept of periodicity needs to be introduced. The period of a state = is the
largest common divisor of the set {n >1:pPm (r,z) > O} denoted by d,. A state is called

ergodic if the state is positive recurrent and aperiodic if d, = 1. Also, a chain is ergodic if
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all its states are ergodic. Suppose that #(™ is ergodic with stationary distribution 7 and

t(0) a real valued function E[t(0)] < oo, then the ergodic average is

n

b = (1 Zt(e)@)) “SEL[H0)] as n— oo,

n -
=1

In this case the Markov chain follows the strong law of large numbers (Feller (1950) as cited
in Li (2008)), that is ergodic averages satisfy central limit theorems are needed to estimate
posterior quantities. As a result the use of MCMC for estimating expectations taken with
respect to the posterior distribution for Bayesian inference is justified (Li, 2008; Doss and
Hobert, 2010).

In most real world applications, when using Markov Chain simulation to fit statistical mod-
els in a Bayesian framework, the state space S will not be discrete. Recall that in the present
Botswana case study only one of many possible realizations of a geostatistical process in con-
tinuous space is obtainable. However the ergodic theorem described above can be extended
and applied more generally, namely in continuous space. When S is a continuous state space

the transition kernel is defined through a conditional probability density function

_ OP(z,y)

p(z,y) oy

where

P(z,y) = Pr(G("H) < y|9(”) =z)= Pr(ﬁ(l) < y\H(O) =uz), for z,yes.

Then the continuous version can be written as

n(y) = / r(@)p(z, y)dz

—00

where 7 is the stationary distribution of the chain. Following these definitions, the limiting
results considered in the discrete case can be applied to the continuous case (Gamerman
and Lopes (2006) as cited in Li (2008)).

The goal of MCMC simulation for Bayesian inference is to simulate realizations 6, (V). .
from an ergodic Markov chain whose stationary distribution is the posterior distribution of
interest. From an initial state (%), realizations of the chain are generated successively until

the chain ‘forgets’ this initial state and exhibits steady state behavior. At this point, call it,
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T, the set of sampled values, 00 . .. 0 is discarded as a ‘burn-in’ period and realizations
after this point, #T+D 9T+2) g(T+3) are approximate draws from the posterior distri-
bution. These realizations, namely 8T+ 9(T+2) g(T+3) ' are the stationary distribution
of the Markov chain. Bayesian inference can proceed by summarizing the posterior distri-
bution which is made up of the J draws after the burn-in period. There are various ways to
construct the required Markov chain needed for a given Bayesian inference problem, for ex-
ample the two most widely used methods, the Gibbs sampler and the Metropolis-Hastings
algorithm (Li, 2008). The method used in this study is an adaptive Metropolis-Hastings
algorithm. This algorithm will be discussed in Section 3.6.5.4.

3.6.5.4 An Adaptive Metropolis-Hastings Method

Generally the transition probability matrix, P, of the Markov chain depends on the tuning of
associated parameters such as the proposal variances or the parameters estimating spatial
decay and smoothness. The choice of tuning parameters is crucial to the success of the
MCMC procedure (Roberts and Rosenthal, 2009).

For high-dimensional problems, that is problems with many fitted parameters, the favoured
choice is MCMC (Li, 2008). However, these methods can be slow to converge, making
practical implementation difficult (Brooks and Gelman, 1998; Gelman et al., 2014, p. 294,
p. 393). Good performance can be obtained from an adaptive MCMC algorithm, see Roberts
and Rosenthal (2009) implemented in the spBayes package (Finley and Banerjee, 2013) in R.
The adaptive method adjusts the tuning parameters for the jumping function based on the
local acceptance/rejection of the new parameters which speeds up convergence. It should
be noted that the method has no effect on the model or final result, but does improve the
speed and accuracy of the fitted values. Various diagnostics are used to test for convergence
(see Section 3.6.5.6).

3.6.5.5 Bayesian Prediction

Bayesian prediction entails sampling from the posterior predictive distribution. The poste-
rior predictive distribution is the distribution of a new data point, say, yo, marginalized over

the posterior:

P(yoly) = / Plyoly. 8.0)r(y]B3.0)d5d0 for yo.y € .
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3.6.5.6 Bayesian Implementation of SGLM in R

In the spBayes package (Finley and Banerjee, 2013) in R, specifically using the spGLM func-
tion, 3 MCMC chains are fitted and various tuning and prior settings and batch sizes and
lengths are considered with the aim of getting the 3 chains to converge. As per the theory
of Markov chains, a chain is expected to eventually converge to the stationary distribution
provided that the length of the chain is long enough (Larget and Simon, 1999). However
convergence is not guaranteed after a given number of draws. Convergence is therefore as-
sessed visually to assess the mixing of each chain using trace plots as well using Gelman
and Rubin’s convergence diagnostic (Brooks and Gelman, 1998). Using the Gelman and
Rubin’s convergence diagnostic, approximate convergence is diagnosed when the upper con-
fidence limit is close to 1. Gelman and Rubin’s convergence diagnostic is obtained using the
gelman.diag function in the Coda package (Plummer et al., 2006). A trace plot plots the
iteration number against the value of the draw of the parameter at each iteration (Plummer
et al., 2006). Trace plots combining all 3 chains are inspected for each parameter to see
how well each chain is mixing in the parameter space as well as to see if multiple chains
are converging. Once the model has converged the spPredict function in spBayes package
is used for the prediction of malaria prevalence at unsampled sites across Botswana, that
is, sites in the validation subset of the data. A prediction grid will also be created whereby
each grid cell will have an associated value for each explanatory variable so that a prediction
at each grid cell or pixel can be made, also using the spPredict function in R. Various grid
resolutions will be tested so that a balance between computational efficiency and sufficient

accuracy can be achieved.
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Chapter 4

Modelling Malaria Prevalence in

Botswana

4.1 Study Area

Figure 4.1 shows the 122 survey sites used in this study. It can be seen that the distribution
of survey sites is sparse in south western Botswana. Typically sparse data are characterized
by large variability (Gosoniu et al., 2010). As a result it is difficult to detect the underlying
spatial correlation. Therefore it was anticipated that prediction might prove more difficult

in this area (Howes et al., 2012).
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Figure 4.1: Distribution of sample sites in Botswana conatined in the MARA database.

4.2 Malaria Data

The malaria count data were extracted from the MARA/ARMA (Mapping Malaria Risk
in Africa) database (Le Sueur et al., 1997). MARA is the most comprehensive database
on malaria compiling data from 1900 to present. It was initiated to provide a malaria risk
atlas by collecting published and unpublished data from over 10 000 surveys across Africa
(Gosoniu et al., 2006). Malaria count data from surveys carried out on 47 171 children
between 1 and 15 years old at 129 unique sites in Botswana are used in the present research
(see Figure 4.1). Surveys which erroneously reported no sample size were excluded, leaving
122 prevalence surveys available for modelling. Historical data was used and hence might be
outdated due to intervention programmes that have may have been implemented, although
using such data has the advantage of including all the data in the model. Further, although
generating risk maps using historical data must be interpreted with caution, Bayesian geo-
statistical risk mapping provides information relating to the uncertainty of the model-based
estimates (Raso et al., 2012). Such a historical approach has been undertaken by Gosoniu
et al. (2006); Craig et al. (2007) and Raso et al. (2012).
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4.3 Climate and Environmental Data

See Chapter 2, Table 2.1 on page 9 for the source of each climatic and environmental
variable. NDVI data were obtained from Moderate Resolution Imaging Spectroradiometer
(MODIS). The TERRA MODIS satellite collects data about the earth’s changing climate.
In particular, MODIS vegetation indices product MOD13A3 was downloaded (NASA Land
Processes Distributed Active Archive Center, 2001). MODI13A3 has a temporal resolution
of one month and a spatial resolution of 1 km. These NDVI data are monthly data for
the years 2000 to 2013. Long term temperature, rainfall and elevation are grid data were
extracted from the WorldClim - Global Climate Data website (Hijmans et al., 2005) based
on data extracted between 1950 and 2000 at 1 km resolution. All raster layers must be in the
same projection and must be precisely spatially aligned and cover exactly the same area in
order for a statistical analysis to take place (Hijmans, 2013). Although the stated resolution
of each of these layers is 1 km the layers come from different sources and could as a result
differ for example, in accuracy (Huisman and Rolf, 2009, p. 312). Thus, after ensuring
that these layers are in the same projection or have the same coordinate reference system,
these layers could possibly still be out of sync or not aligned. It was observed that each
NDVT layer had fewer cells than the WorldClim layers. It is always better to decrease the
resolution through resampling methods rather than to increase the resolution (Gotway and
Young, 2002). The NDVT layer was used as a reference layer and all WorldClim layers were
resampled using the bilinear method so as to achieve a matching extent and resolution, that
is to ensure that all raster layers are aligned. Surface Water Body Features were extracted
from GEOnet Gazetteer (Gazetteer, 2006) as a shapefile data layer comprised of 46 591
derivative point gazetteer features based on 1:250 000 data. In the final composition of the
spatial database only those data points at the locations of sample sites were considered, that
is for each sample site an attribute for each predictor was known. Subsequently these data
were imported into R and manipulated for analysis (see Section 3.2.2 on page 14 in Chapter

3 for a description of this process).

A survey of the research in similar malaria studies across Africa served as a guide as to
which variables should be considered. A list of all the variables used at the start of the
model building process with their full name, is provided in Table 4.1 and calculations used

to obtain some of the variables not fully specified are provided in the Appendix.

4.4 Basic Exploratory Data Analysis

Figure 4.2 shows a plot of the observed malaria prevalence at each sample site in the study.

This plot shows that the observed malaria prevalence in Botswana is relatively low and
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uniform for most parts of the country. In the north higher prevalence and more variation

can be seen.

Observed Prevalence

dfFull$Lat

T T T T T
20 22 24 26 28

dfFull$Lon z

Figure 4.2: A plot of observed malaria prevalance at sample sites in Botswana from data
conatined in the MARA database.

An informal test of spatial dependency and association between observed prevalence or risk
of malaria was performed by plotting a bubble plot of sample sites in Botswana. Figure 4.3
shows the proportion of malaria cases out of the number examined multiplied by 4 over the

maximum of this ratio.
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Figure 4.3: A bubble plot of sample sites in Botswana representing the proportion of malaria
cases out of the number examined multiplied by 4 over the maximum of this ratio. This
ratio is represented by the size of the circle.

These ratios, represented by circles, suggest that there is some association between big circles
and other big ones that are close together. This is especially apparent in northern Botswana.
Generally circles close together exhibit similar malaria risk intensities. Patterns of the
attribute of interest, namely observed malaria risk, appear not to be random. Although, it
must be noted that this is an informal test used to obtain a general sense of the observed

spatial association between sample sites (Hengl, 2009).

4.5 Non-Spatial Model

A spatial database was compiled so that at each sample site a value for each climatic and
environmental explanatory variable could be obtained (see Section 3.2.2 on page 14 in Chap-

ter 3). Table 4.1 shows the explanatory variables used in the non-spatial modelling with a
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description of each variable.
Table 4.1: Variables by theme used in non-spatial model building.

Varaible Description Theme
biol Annual Mean Temperature
bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
bio3 Isothermality (bio2/bio7) (* 100)
bio4 Temperature Seasonality (standard deviation®™100)
biob Max Temperature of Warmest Month
bio6 Min Temperature of Coldest Month
bio7 Temperature Annual Range (bio5-bio6)
Temperature
bio8 Mean Temperature of Wettest Quarter
bio9 Mean Temperature of Driest Quarter
biol0 Mean Temperature of Warmest Quarter
bioll Mean Temperature of Coldest Quarter
summerTemp Summer Temperature (months 12, 1, 2, 3)
winterTemp  Winter Temperature (months 4-10)
SDTemp Standard Deviation of Annual Temperature
biol2 Annual Rainfall )
biol3 Rainfall of Wettest Month
biol4 Rainfall of Driest Month
biol5 Rainfall Seasonality (Coefficient of Variation)
biol6 Rainfall of Wettest Quarter
biol7 Rainfall of Driest Quarter
biol8 Rainfall of Warmest Quarter Rain
biol9 Rainfall of Coldest Quarter
q Mean Peak Month where Rainfall is Concentrated
rClndex Rainfall Concentration Index
totRain Annual Total Rainfall
summerRain ~ Summer Rainfall (months 12, 1, 2, 3)
winterRain Winter Rainfall (months 4-10)
SDRain Standard Deviation of Annual Rainfall
summerNDVI  Summer NDVI (months 12, 1, 2, 3)
winterNDVI  Winter NDVI (months 4-10) NDVI
SDNDVI Standard Deviation of Annual NDVI
NDVI Annual NDVI )
DstTCIW Distance to Closest Water Surface
Unthemed
altitude Altitude }
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In Stage 1, for cross-validation purposes, as discussed in Section 3.4.2 on page 27 in Chapter
3, the malaria prevalence dataset were randomly split into derivation (n = 104) and val-
idation (n = 18) subsets. All model building proceeded on the derivation dataset. Stage
1 also involved selecting variables that were good predictors of malaria prevalence. Each
variable was tested in a univariate logistic regression model. Of the 34 potential explana-
tory variables, all were significantly associated with malaria prevalence in univariate logistic

regression (see Table 4.2).
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Table 4.2: Significant variables associated with malaria prevalence in univariate logistic re-
gression in Stage 1 ranked from lowest AIC to highest - Stage 2. The P(z) column represents
the P value, or significance level. The smaller the P value, and if it is less than a threshold
probability, the stronger the evidence, in this case, against the exclusion of a variable in the
univariate logistic regression.

Independent Variable AIC P(z)
bio9  676.60 0.00

bioll  677.06 0.00
winterTemp  680.21 0.00
rClndex  714.96 0.00
biol5  726.85 0.00

bio6  727.45 0.00

biol  736.56 0.00

biol7  753.62 0.00
winterRain ~ 813.10  0.00
SDTemp  820.10 0.00
bio4  820.16 0.00

biol3  843.60 0.00

biol9  851.35 0.00

biob  857.91 0.00
SDRain  861.68 0.00
biol4  887.53 0.00

biol6  888.25 0.00
summerRain  900.93 0.00
biol0  960.73  0.00
summerTemp 1008.64 0.00
totRain  1020.07  0.00
biol2 1020.07 0.00

bio8 1023.37 0.00
altitude 1027.90 0.00
biol8 1059.81 0.00
summerNDVI  1066.56  0.00
NDVI 1075.83 0.00
SDNDVI 1076.26  0.00
winterNDVI  1079.44  0.00
DstTCIW  1084.40 0.00
bio3 1088.01 0.01

q 1088.39 0.01

bio7 1089.27 0.02

bio2 1092.31 0.01




In Stage 2 variables that were significant in Stage 1 were ranked based on each model’s
AIC score and then tested within each theme for correlation among the variables. Variables
were tested within three themes, namely temperature, rain and NDVI. Variables that were
strongly correlated, Spearman’s r > 0.85, with a higher-ranking (AIC) variable belonging
to the same theme were excluded. In the temperature theme mean temperature of driest
quarter (bio9), standard deviation of annual temperature (SDTemp), maximum temperature
of warmest month (bio5), summer temperature , isothermality (bio3) and annual tempera-
ture range (bio7) were selected. In the rain theme rainfall concentration index (rClndex),
precipitation of wettest month (biol3), precipitation of coldest quarter (biol9), precipita-
tion of driest month (biol4), total rain (totRain), precipitation of warmest quarter (biol8)
were selected. In the NDVI theme summer NDVI, winter NDVI, annual NDVI, standard
deviation of annual NDVI and NDVI were all correlated with summer NDVTI having the low-
est AIC. The remaining unthemed variables representing unrelated explanatory variables,
namely distance to closest water source (DstTCIW) and altitude, were added to the selected
variables from each theme in Stage 2. Individual scatter plots of logit(p) against these 15

variables selected at Stage 2 for further analysis, are shown in Figure 4.4.
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Figure 4.4: Scatter plots of candidate explanatory variables selected in Stage 2 to be used
in step-wise procedures. Malaria prevalence in 1 to 14 year old children in Tanzania based
on historical MARA data is reprsented by the Y axis on a logit scale. On the X axis are the
following variables (see table for variable description): [1] DstTCIW in km, [2] bio3 in °C,
[3] biob in °C, [4] bio7 in °C, [5] bio9 in °C, [6] biol3 in mm, |7] biol4 in mm, [8] biol8 in
mm, [9] biol9 in mm[10], altitude in m above sea level, [11] SDTemp in °C, [12]| totRain in
mm, [13] summerTemp in °C [14] summerNDVT ratio [0,1], [15] rCIndex percentage between
0 and 100.
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In Stage 3, 1 000 bootstrap samples from the derivation data were run on the list of variables
that survived Stage 2 and an automated backward exclusion procedure on each sample was
performed, that is automated backwards stepwise elimination in conjunction with bootstrap
resampling (Austin and Tu, 2004). The automatic backward exclusion procedure involved
starting with all candidate variables, testing whether each variable should be deleted using
the AIC criterion, deleting the variable, if any, that improved the model the most by being
deleted. This process continued on each bootstrap sample until no further improvement was
possible. The frequency, a number out of a thousand, with which a candidate variable was
selected as an independent predictor in each bootstrap sample was recorded as well as the

frequency of the sign of the coefficients, as shown in Table 4.3.
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Table 4.3: Results of bootstrap backward step-wise procedure models in Stage 3 and Stage
5 against 1000 bootstrap samples of the malaria prevalence data, yielding a candidate list
of variables to be analysed in remaing stages. The selection frequency is preseneted as
well as the rate of change of the sign of the coefficient for each variable as a percentage.
Coef+ and Coef— represent the frequency with which a coefficient is positive and negative
respectively.

Stage 3 Stage 5
Candidate Freq Coef+  Coef—  Final List Freq Coef+  Coef—
List

bio9? 997.00  100.00  0.00 winterTemp? 993.00  100.00  0.00
altitude! 987.00  100.00  0.00 altitude 900.00  99.00 1.00
bio5! 941.00  0.00 100.00  bio53

bio7 ! 914.00  99.00 1.00 bio74 796.00  93.00 7.00

summerTemp 875.00  3.00 97.00

summerNDVI 873.00  5.00 95.00

SDTemp 869.00  98.00 2.00

DstTCIW! 865.00  99.00 1.00 DstTCIW 843.00  100.00  0.00

bio18! 723.00 86.00 14.00 biol8 804.00 88.00 12.00
rClndex 663.00 5.00 95.00
bio3 657.00 11.00 89.00

totRain? 653.00  23.00 77.00 totRain® 745.00  21.00 79.00
biol3 617.00  75.00 25.00
biol9 563.00  32.00 68.00
biol4 476.00  17.00 83.00

! Variables selected into Stage 4 model.

2 Previously excluded variable selected more frequently than bio9 in bootstrap procedure.
3 Selected more frequently than previously excluded biol0 in bootstrap procedure.

4 Selected more frequently than previously excluded bio2 in bootstrap procedure.

5 Selected more frequently than previously excluded biol2 in bootstrap procedure.
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Given this candidate list of variables from Stage 3, Stage 4 involved performing manual
stepwise tests for inclusion starting with the most frequently selected variable from Stage 3.
The manual forward stepwise regression continued as long as all entered variables remained
significant at the 5% probability level. If a previously entered variable became non-significant
with the addition of another, the one more frequently selected was retained. The marked
variables, denoted by the superscript equal to 1 in Table 4.3 were selected into the Stage 4

model.

Stage 5 involved adjusting the Stage 4 model by re-assessing variables that were previously
excluded at Stage 2 using further bootstrapping procedures. The excluded correlated vari-
ables in each theme corresponding to the favoured variable chosen at Stage 2 is allowed to
re-enter the model in order to compete for selection in the Stage 5 model. Selection is based
on frequency of selection in bootstrapped samples and if a variable was not excluded by the
stepwise algorithm. Except for winter temperature which re-entered the model replacing
bio9, none of the previously excluded variables that re-entered improved the model based
on these criteria. The variables denoted by superscripts 2 to 5 in Table 4.3 are the variables

that survived after re-assessing the bootstrap model with previously excluded variables.

The variables that survived in Stage 5 were used to fit a logistic regression model. As per
the theory of generalized linear models (GLM) as described in Section 3.3.7 on page 23 in
Chapter 3, since the response is in the form of count data a link function was required to
ensure that the expectation of the response was a linear function of the Stage 5 explanatory
variables. The logit link was used for this purpose. In R, the glm function in the stats
package, which is a standard package supplied with R (R Core Team, 2013), was used to
perform the logistic regression. The results of the Stage 5 non-spatial logistic model are

presented in Table 4.4.

Table 4.4: Stage 5 non-spatial model results. Odds ratios, and corresponding confidence
interval estimated from non-spatial regression against seven variables, fitted on derivation
data only (n = 106, AIC = 613.8).

Variable Odds Ratio P(z) 95% CI

1  winterTemp 6.01 0.001 (3.657,9.931)
2 altitude 1.00 0.001 (1.002,1.005)
3 biod 0.48 0.01  (0.297,0.768)
4 bio7 1.53 0.01 (1.154,2.044)
5 DstCIW 1.01 0.01 (1.003,1.014)
6 biol8 1.01 0.01 (1.005,1.013)
7 totRain 1.00 0.001 ( 0.994,0.999)
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4.6 Spatial Model

In Stage 6 the variables that survived in Stage 5 were used to fit a spatial generalized
linear model (SGLM), also known as a generalized linear mixed model. As discussed in
Section 3.6.4 on page 34 in Chapter 3, the SGLM extends the GLM by allowing additional
sources of variability that occur due to unobservable random effects (Christensen et al.,
2000). Diggle et al. (1998) proposed and described how the spatial dependence or error
structure for SGLMs can be modeled via Gaussian processes for point-level, geostatistical
data. Following the primary reference paper (Craig et al., 2007) of this study, stationarity is
assumed and the exponential covariance function is also the assumed covariance structure.
This covariance structure is imposed in order to describe the spatial dependence or error
structure among the observations (Diggle and Ribeiro, 2007). The spGLM function in the
spBayes package (Finley and Banerjee, 2013) was used to fit this SGLM. The probability
that y(s;) = 1 or 0, that is the probability of an individual between 1 and 15 years of age

being infected with malaria or not, is given by

_exp(x(si)’ B+ w(si))
p(si) = 7
1+ exp(x(si)” B+ w(s;))

where it is assumed the sample sites s1...s, € D where D a fixed subset of R?. The ex-
planatory variables from Stage 5 are included in the transposed vector x(si)T associated
with each site s;, and B is a p-dimensional vector of coefficients. These coefficients from
the non-spatial model served as starting points and the Cholesky square root of the regres-
sion parameters estimated covariance were used as Metropolis tuning values in the spGLM
function (Finley and Banerjee, 2013). As per the details of the hierarchical Bayesian model
setup specified detailed in Chapter 3 in Equation 3.23 on page 42, the second stage speci-
fies the association in the random effects. A Gaussian process specifies the random effect,
denoted by w(s) = MVN(0,X(@®)), with © denoting the variance, o2, and the decay, ¢,
parameters as defined in Chapter 3 in Section 3.6.4.1 on page 35. Staring values for these

parameters in the spGLM function were specified as follows, ¢ = o2=1,w=0.

3
0.5(d)’
A non-informative flat prior for the regression effects 3 that is p(3) o 1 was assigned. For

2 an inverse Gamma prior was assigned with shape and scale

the variance parameter, o
parameters 2 and 1 respectively. Prior distributions assigned to the decay parameters are
typically set relative to the size of their domains (Finley et al., 2007). The approximate
effective range, r, which is the range at which the magnitude of correlation decays to 5% of
its maximum value, is given by solving the equation for the exponential correlation function
given in Chapter 3, 3.18 on page 36, that is solving, exp(—¢r) = 0.05, to give r %% (Finley

et al., 2007). Hence the effective range is represented by the denominator of the fraction
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with the numerator being 3. As a result for the decay parameter, ¢ uniform priors were
_3
0.1(d)
maximum intersite Kuclidean distance and equates to approximately 1010 km. Scanning the

assigned with an upper and lower range of % and respectively where d represents the
literature where the spGLM function has been used various variants of the starting values
and ranges of priors were attempted. For example the range of the spatial decay parameter,
_ 3 ;

0.01(d) ° This resulted

in a lack of convergence and a much longer running time. The results of the Stage 6 spatial

¢, was tested using a larger range than currently used, namely % and

model are presented in Table 4.5 and the results of the mean error and mean absolute error

of the spatial and non-spatial prediction at validation sites are presented in Table 4.6.

Table 4.5: Stage 6 spatial model results. Odds ratios, and corresponding credibility interval
derived from 70000 bayesian simulations, fitted on all data (n = 122).

Variable Odds Ratio  95% Credibility Interval

1 winterTemp 30.54 (1.550, 1244.975)
2 altitude 1.84 (0.947, 4.057)
3 bio5 0.31 (0.009, 5.451)
4 bioT 1.91 (0.293, 19.954)
5 DstTCIW 1.09 (0.794, 1.453)
6 biol8 1.95 (1.428, 2.716)
7 totRain 0.68 (0.378, 1.158)

Table 4.6: Mean error and mean absolute error of spatial and non-spatial prediction at
validation sites.

Measure Spatial NonSpatial
1 Mean Error -0.15 -0.46
2 Mean Absolute Error 0.20 0.46

The spatial maps of mean predicted malaria prevalence as well as the associated standard
deviation of predicted malaria prevalence in Botswana resulting from the Stage 6 spatial

model at a 20 km resolution are presented in Figures 4.5 and 4.6.
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Figure 4.5: Map of mean predicted malaria prevalence in Botswana resulting from the Stage
6 spatial model at a 20 km resolution.
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Figure 4.6: Map of associated standard deviation of predicted malaria prevalence in
Botswana resulting from the Stage 6 spatial model at a 20 km resolution.
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4.7 Discussion

As more variables are tested against a certain data set, there is a greater risk that some will
explain the data merely by chance, but will fail to explain new data (Craig et al., 2007).
Selecting a small subset of variables for spatial modelling from a large number of potential
candidates is a major challenge and can easily become arbitrary (Craig et al., 2007). The
ideal solution would be to test every possible combination of variables in a Bayesian spatial
framework. However, from a computing point of view this is unfeasible, if not impossible
(Craig et al., 2007). In the interest of finding the most practical and parsimonious solution
the list of candidate variables was reduced using non-spatial selection methods before moving
to the spatial context. The small subset of variables derived in this manner, although each
independently associated with the response, may possibly have been spurious because the
spatial correlation was not yet acknowledged. For this reason in Stage 6 this subset of
variables was fitted in a Bayesian geostatistical model. The spatial model derived from the
observed locations was used to predict prevalence of malaria infection in children 1-14 years

old at unobserved map locations across the whole of Botswana.

Correlation among predictors compromises the identification of consistent predictors (Craig
et al., 2007). As a result if more than one correlated variables compete for entry into a
model, a strong, reliable predictor may ultimately be selected less frequently than a weaker
predictor (Austin and Tu, 2004). Given this it was crucial that the candidate list contained
only variables that are slightly correlated. This was achieved in Stage 2 where the candidate

list was reduced from 34 to 15 variables.

A set of predictors are reliable if they not only explain a particular data set, but are as-
sociated consistently with the response (Craig et al., 2007). The bootstrapping of Stage 3
aimed to identify such predictors because those that consistently explain different subsets of
the data will more likely do a better job at explaining new data (Austin and Tu, 2004). The
step-wise bootstrap procedures ensure that variables which explained the most observations
would be selected most frequently while those that only explained few observation would
be selected only when these observations appeared in the bootstrap sample. The effect
of individual observations, in particular outlying observations, on variable selection is thus

minimized.

Univariate ranking (Stage 1 and 2) can lead to a problem known as “data peeking” (Babyak,
2004). The phrase “data peeking” refers to the process of examining the relation between
an explanatory variable and the response variable, in isolation, in order to select which
variables to include or exclude from a regression model (Babyak, 2004). As a result the data

is artificially set up for success in that undeclared testing and discarding of variables, as was
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done in these early stages, may lead to illegitimately high model fit. Furthermore at Stage
2 variables were excluded based on low univariate correlation with the response variable.
This says nothing of their predictive power which may be different when other variables
are accounted for (Craig et al., 2007). For example, variables tested on their own in a
univariate setting may behave differently with respect to the response variable when they
are considered simultaneously with one or multiple other variables. If there is a suppressor
variable present, for example, the relation between a variable and a response variable may not
appear to be important when tested in isolation, but may become important after including
other explanatory variables (Babyak, 2004). Conger (1974) describes a suppressor variable
as a variable which when included in a regression model increases the predictive validity
of another variable or multiple variables. Stage 5 sought to address these issues, by giving
each variable excluded in Stage 2, in favour of its surviving counterpart in Stage 4, a chance
to re-enter and possibly outperform its competitors in a multiple-variable context. At the
same time the bootstrap sub-sampling reduces the influence of the data set on this process
(Craig et al., 2007). Winter temperature was such a variable that re-entered when allowed

to re-compete in a multiple variable context.

The Stage 3 bootstrap-stepwise procedures also provided useful information regarding the
frequency distributions of coefficients in the 1 000 stepwise models. An insight into the
reliability of a predictor can be seen in this way. A variable whose coefficient varies widely,
or one that is sometimes positive and sometimes negative, is not reliable and should be
considered cautiously (Concato et al., 1993). Austin and Tu (2004) found that 60% was an
optimal cut-off level for including the predictors in the final equation. Austin and Tu (2004)
also note that if a coefficient is positive half the time and negative the other then that is an

indication of instability in the model.

Consider the results of Stage 3 to Stage 5 presented in Table 4.3. It can be seen that some
variables were unstable, having positive coeflicients in some models and negative coefficients
in others. The variable depicting precipitation of coldest quarter (biol9) was the most
unstable. It was also selected second to last frequently in the bootstrap samples. The
benefits of Stage 3 can be seen with the variable altitude. In Stage 2 it performed only
reasonably well- it’s univariate ranking positioned it somewhere in the bottom half of Table
4.2. However in Stage 3 in the bootstrapped multiple variable context it proved to be the
second most frequently selected variable and it progressed to Stage 4 and 5. Altitude, biob
and bio7 were selected most frequently, apart from bio9 which was replaced by winterTemp
in Stage 5, and were all selected into Stage 4 and Stage 5 and all variables which progressed
had stable coefficients. These results confirm the usefulness of Stage 3 as a way of selecting

the most important predictors.
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Exponentiation of the model parameters, in the non-spatial and spatial models, gives the
odds ratio for each explanatory variable. The odds ratio indicates whether there are negative
or positive relationships and the strength of relationships between the explanatory and
outcome variables (Dobson and Barnett, 2008, p. 152). Testing model parameter significance
in the spatial model was based on 95% credibility intervals (CrI). If the value zero is not
in 95% of the Cyl then the estimated parameter of the model is significant. Consider the
credibility interval column in Table 4.5: it can be seen that all parameters are significant. All
of these explanatory variables, in the final spatial model, or transformations of these, have
been successfully implemented in previous geostatistical modelling approaches employed in

other African countries (see Section 2.2 on page 8 in Chapter 2).

Consider the trace plot of winter temperature (winterTemp) as shown in Figure 4.7. As
described in Section 3.6.5.6 on page 47 in Chapter 3, this is a trace plot of all 3 MCMC
chains combined for the parameter winter temperature. This plot shows erratic movement
in the parameter space. The trace plots for all parameters are shown in Figures 4.7, 4.8,
4.9, 4.10 on pages 72 to 74. Inspecting these plots, as was seen with the trace plot of winter
temperature, it is not clear to see that the 3 chains have converged. The inspection of
trace plots of each parameter are as a result coupled with the assessment of the Gelman and
Rubin’s convergence diagnostic score (Brooks and Gelman, 1998). Approximate convergence
is diagnosed when the upper confidence limit is close to 1. An upper confidence limit of 1.07
was obtained which suggests that the spatial model in Stage 6 has approximately converged

adequately.

It should be noted the differences between the studies can be attributed to the fact that
the reference study had more themes and variables available and the prevalence data used
does not refer to the same time period. Craig et al. (2007) implemented the same type
of non-spatial and spatial models using MARA data over survey years 1961 to 1962. The
present study used data also from MARA but spanning from 1944 to 1997. With respect
to their temperature theme, they found annual mean temperature to be significant in their
final spatial model. This research found maximum temperature of warmest month (bio5),
annual range of temperature (bio7), mean winter temperature to be significant. In terms
of their rain theme, they found total summer rainfall to be significant. This research found
total annual precipitation and precipitation of warmest quarter (biol8) to be significant
in final spatial model. They found altitude to be significant in their final spatial model.
This research also found altitude and distance to closest water surface (DstTCIW) to be
significant in the final spatial model (DstTCIW variable was not part of their initial list of
variables tested). Gosoniu et al. (2010) found temperature, altitude, distance to the nearest
water surface to be significantly associated with malaria prevalence in Angola. This model

included socio-economic index and indoor residual spraying variables which were not tested

68



in the current study because they could not easily be obtained for Botswana. At the time
of writing, it was found in this study that some GIS data was not as easily available or
obtainable as other GIS data.

High rainfall during the hot summer months, as reflected by biol8 - precipitation of warmest
quarter, allows rapid breeding and population expansion of the mosquito vectors (Craig
et al., 2007). Zacarias and Andersson (2010) found that in Mozambique, malaria transmis-
sion is higher in the wet season with both temperature and rainfall positively related to
malaria. Annual total rainfall is positively associated with malaria risk and it is conceivable
for it to also influence malaria breeding and risk (Zacarias and Andersson, 2010). High
temperatures, reflected by biob - maximum temperature of warmest month and influenced
by bio7 - annual range of temperature, maximizes the maturation rate of the parasite in
its exothermic arthropod host (Molineaux et al., 1988). Warmer winters, as reflected by a
positive association between winter temperature and malaria risk, reduces the die-back of
mosquitoes and parasites, in this way increasing the reservoir for the following season (Mo-
lineaux et al., 1988). In general, the warmer the climate, the better chance the mosquito has
for survival (World Health Organization, 2014). A major finding in this study is that winter
temperature has by far the greatest effect on malaria risk. Referring to Table 4.5, it can
be see that the odds ratio for winter temperature is about 15 times greater than any other
predictor. To see what effect would be had on malaria risk without winter temperature the
spatial model was run without this variable. Malaria risk was virtually zero all over the

country without accounting for winter temperature.

Scarcity of data or sparse data in certain areas can introduce large prediction errors (Gosoniu
et al., 2010). The spatial maps resulting from the Stage 6 spatial model at a 20 km resolution
include a map of mean predicted malaria prevalence as well as the associated standard
deviation of predicted malaria prevalence in Botswana (see Figures 4.5 and 4.6). Considering
these spatial maps generated in this study large errors can be seen where there are few data
points. There is evidence of this in the south western region of Botswana where the model in
this study over predicts malaria risk greatly and presents a picture of high malaria risk where
the reference paper (Craig et al., 2007) followed predicts no risk in that region. This region
happens to have the fewest observations and also accordingly has high uncertainty as seen
in corresponding map of standard deviation (see Figure 4.6). Two different resolutions were
attempted in the generation of these maps, 10 km and 20 km, respectively. The memory
resources on the computer used for computations, namely a 1.8 GHz Intel Core i5 with 4
GB RAM, were exceeded when predicting risk on the 10 km resolution grid. No problems
were experienced using a 20 km resolution grid. Determining a suitable balance between
computer capabilities and map precision, by experimenting with varying grid sizes, is a

common goal in geostatistics (Swanson et al., 2013).
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4.8 Conclusions

The objectives in this thesis were primarily to: 1) assess whether there is evidence to link
the incidence of malaria prevalence to environmental and climatic variables operating in
the area, 2) assess whether the non-spatial selection procedure is effective and whether it
has had an effect on selecting spatial variables 3) assess the predictive performance of the
non-spatial versus the spatial model, 4) ascertain if there are any areas of high malaria risk,
5) assess whether the predictions of prevalence are useful and whether they can they be used
to develop a GIS, 6) determine if all the necessary routines are available in R to conduct

the analyses and 7) assess whether the process can be automated.

All of the explanatory variables in the final spatial model were positively associated with
malaria prevalence and all that survived to Stage 6 were significant in the final model.
There was evidence to suggest that winter temperature had the greatest effect on malaria
prevalence in Botswana given the data in this study. Evidence for this can be seen in Table
4.5, where the odds ratio for winter temperature is about 5 times greater than any other
predictor. Leaving winter temperature out of the spatial model malaria risk was virtually

zero all over the country.

The non-spatial staged variable selection process proved to be practical, although not neces-
sarily optimal. On repeating the procedure a second time some new variables were added and
some variables in the current model were excluded. This suggests that some variables explain
the data merely by chance, but will fail to explain new data. Multiple bootstrap samples
drawn from the data allowed for the identification of consistent and stable explanatory vari-
ables. The selection frequency criterion provided an objective means for choosing between
two variables, and to choose between variables that were strongly correlated. Although this
non-spatial selection procedure proved practical and able to identify stable explanatory vari-
ables and also able to provide an objective means for selecting one variable over another,
ultimately its efficacy is questionable due to the fact that a unique set of spatial variables

could not be selected.

The mean prediction error measure suggests that the non-spatial model overestimated
malaria prevalence at sample sites 3 times more so than it did in the spatial model. The
mean prediction absolute error measure suggests that the average magnitude of prediction
errors is also less in the spatial than in the non-spatial model (see Table 4.6). As a re-
sult, there is evidence in the current study to suggest that the spatial model’s predictive

performance was better than the non-spatial model.

The smoothed spatial map presented in this study, namely Figure 4.5, is similar over large

portions than that of the reference paper followed in this study (Craig et al., 2007). In the
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east of Botswana malaria prevalence is fairly similar. Both maps present low prevalence in
the east which gradually increases northwards. High malaria prevalence can be see in parts
of the north of Botswana and also in the south west. Where the maps differ most is in the
south western region of Botswana. The model in this research over predicts greatly in this
region and presents a high picture of malaria risk where the reference paper predicts no risk
in that region. This region happens to have the fewest observations and also accordingly
has high uncertainty as seen in corresponding map of standard deviation (see Figure 4.6).
Sparse data is difficult to predict and the reliability of the map depends on the data available
to derive the model (Gosoniu et al., 2010). Therefore it is conceivable for such weaknesses to
exist in the map across data-sparse regions (Howes et al., 2012). A more similar picture of
malaria risk, and a more accurate one, might have been achieved had a more comprehensive
list of predictors been used. Craig et al. (2007) had at their disposal 50 variables to begin
with, in this research only 34 variables could be obtained, and the prevalence data was also

not over the same period.

R as an open source program, with its wide array of geospatial packages, proved to provide all
the necessary routines needed to conduct the analyses. Automating the analyses proved more
difficult than expected. For example, working with MODIS NDVI data required a technical
understanding of the data which are Hierarchical Data Format (HDF) files. Manipulating,
reprojecting, merging and aligning raster data proved challenging and required a fair amount
of programming to accomplish. Compiling the spatial database can be automated but not
without careful thinking and a good understanding of all the checks involved. The variable
selection procedure involves many steps and comparisons such as the AIC criterion, the
frequency selection criterion and the correlation criterion. Determining which variables in
each theme, one variable at a time, were correlated and which of these had the lowest AIC,
was automated. The rest of the procedure had to be completed each staged at a time.
The automation of all these steps in both compiling the spatial database and the variable
selection procedure seemed unnecessarily difficult given the current scope. The length of
time for the running of each MCMC chain is also a drawback. At least 24 hours was needed
to run 3 chains of 350 000 simulations each. If the chains were not mixing well 3 chains
of 350 000 simulations each would take even longer than 24 hours to run. Experimenting
with different parameters and settings in order to achieve convergence in a reasonable time

period is thus a lengthy process making the spatial analysis more difficult to automate.

Revisiting and extending this study in the future may reveal that ignoring spatial correlations
during the non-spatial variable selection procedure could prove to be a major weakness,
leading to sub-optimal variable selection results. As computers get more powerful and as
statistical software packages are further developed, a variable selection procedure within a

spatial framework may be viable for the non-expert researcher.
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Figure 4.7: MCMC chain trace plots.
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Figure 4.8: MCMC chain trace plots.
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Appendix A: R Code

# Compliling of Spatial Database #

rr‘

# set workspace

setwd (" /Volumes /JUSTJUBBA/Spatial")

check if package is installed , install if not load otherwise
packagelnstallLoad <— function(x){
for( i in x ){
# require returns TRUE invisibly if it was able to load package
if( ! require( i , character.only = TRUE ) ){
# If package was not able to be loaded then re—install
install.packages( i , dependencies = TRUE )
# Load package after installing

require( i , character.only = TRUE )

# packages needed for spatial db comilation and non—spatial model building
packagelnstallLoad (c¢("raster", "RMySQL", "sp", "rgdal", "gdalUtils", "maptools
"

, "maps", "plyr", "stats", "glm2", "bootStepAIC", "texreg", "xtable",6 "
tables", "data.table", "diagram", "caret", "bootStepAIC"))

packages needed for spatial analysis
packagelnstallLoad (c¢("spBayes", "MBA", "fields", "raster", "coda", "fields"))
# connect to MySQL
con <— dbConnect (MySQL() ,
user = "root",
password = "hons123",
dbname = "MySql",
host = "localhost")
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35|# delete table if exists
dbSendQuery (con, ’'DROP TABLE IF EXISTS botsTable;’ ) #decimal(9,6)

w

38|# create table
39|# MARA Botswana dataset

10| dbSendQuery (con, ’CREATE TABLE botsTable (Lat float (10,8),

a1 Lon float (10,8),

42 Start Mnth int ,

43 Start_Yr int ,

44 End Mnth int ,

45 End Yr int ,

46 AgeGroup Lower int,

a7 AgeGroup Upper int

48 Numb Positive int,

49 Numb Examined int);’)

50

51|# import data from csv file into newly created table — save csv where root
user has default access

52| dbSendQuery (con, 'LOAD DATA LOCAL INFILE "/usr/local /BotsMARA.csv"

53 INTO TABLE botsTable

54 FIELDS TERMINATED BY " )"

55 LINES TERMINATED BY "\n"

56 IGNORE 1 LINES (Lat,

57 Lon,

58 Start_ Mnth,

59 Start_Yr,

60 End_Mnth,

61 End Yr,

62 AgeGroup_Lower,

63 AgeGroup_ Upper,

64 Numb Positive ,

65 Numb_Examined ); ")

66
67|# select all childern between 1 and 15
68| rs <— dbSendQuery(con, ’SELECT x

69 FROM botsTable

70 WHERE AgeGroup Upper <= 157)
71

72

73|# retrieve data from MySQL
74| sitesMultiple <— fetch(rs, n = 6000)

76|# clear previous MySQL transaction from memory
77| dbClearResult (rs)

78
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94

95
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98

99

100

101

102

103

104 | #

105

106

107

108

109

110

111

112

113

# close connection to MySQL

dbDisconnect (con)

# clean up data #

85| # average over multiple sites to get unique sets

sitesDf <— ddply(sitesMultiple , .(Lon, Lat), summarise, Month = round (mean(
Start Mnth)), Pos = round (mean(Numb Positive)), Examined = round (mean(Numb
_Examined)))

sitesDf <— ddply(sitesMultiple, .(Lon, Lat), summarise, Month = round (mean(
Start Mnth)), Pos = round(mean(Numb Positive)), Examined = round (mean(Numb
_Examined)))

# extract coords
coordsSitesDf <— sitesDf[,c("Lon","Lat") |

# remove any duplicates
if (any(duplicated (coordsSitesDf)))
sitesDf <— sitesDf[!duplicated (coordsSitesDf) ,]

# remove obs where 0 ppl examined
sitesDf <— subset (sitesDf, sitesDf$Examined > 0)

# extract coords from clean data
coordsSitesDf <— as.matrix(sitesDf[,c("Lon","Lat")])

Perform calculations to find distance to closest surface water body and find

where these are #

# read shapefile into SpatialPointsDataFrame

surfWaterSpdf <— readShapePoints("Surface water/gns swb/gns swb'")

# convert SPDF to DF
surfWaterDf <— as.data.frame(surfWaterSpdf)

# 129 sites
locs <— SpatialPoints(sitesDf[,1:2], projdstring=CRS("+proj=longlat +datum—
WGS84") )

5|# 46591 water sources

src <— SpatialPoints (surfWaterDf[,1:2], projd4string=CRS("+proj=longlat +
datum=WGS84" ) )
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w

144

146

#A distances of 46576 water sources per site
distances <— lapply (1:length(locs), function(i) spDistsN1(src, locs[i],
longlat=TRUE) )

# get min distance per site in km
sitesDf$DstTCIW <— sapply (distances , min)

# get index of min distance sites to find their coords

minPos <— sapply (distances , which.min)

sitesDf$LonWater <— surfWaterDf|[minPos,1]
sitesDf$LatWater <— surfWaterDf[minPos,2]

# get map boundary of Botswana explore the sample site data #
# get boundary shape for Botswana
data (wrld simpl)

botswana <— wrld simpl[wrld simpl$NAME — "Botswana" ,]

# extract coords
coordsSitesDf <— sitesDf[,c("Lon","Lat")]

# convert DF to SPDF
sitesSpdf <— SpatialPointsDataFrame (coordsSitesDf, sitesDTf)

# assign projection to SPDF
projection (sitesSpdf) <— projection (botswana)

5|# only keep sample sites that are in Botswana

sitesSpdf <— sitesSpdf|[botswana,| +# 122 obs

# plot sample sites representing proportion of malaria cases out of no.
examined

# over the maximum of this ratio by the size of the circle

plot (botswana)

plot (sitesSpdf, add = T, asp = 1, cex = 4 * sitesSpdf$Pos/sitesSpdf$Examined/
max(sitesSpdf$Pos/sitesSpdf$Examined), pch = 1)

3|# Notes: There seems to be some association btw big circles and other big ones

4| # that are close together. Informal test showing that circles close

together exhibit similiar malaria intensitie although.

5| H Patterns of attribute seem not to be random.

# WorldClim climate layers & MODIS NDVI raster processing #
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184
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192

193

# get and process modis data .hdf files

#A download all available monthly images for the years 2000 — 2013. MODIS
PRODUCT: MODI13A3, Terra, Vegetation Indices, Tile, 1000m, Monthly

ModisDownload (x="MOD13A3" ;h=c (21,22) ,v=c(8,9) ,dates=c(’2000.01.017,72013.12.31

) ,mosaic=F, proj=F)

load ("ModisLP . RData")
source ("ModisDownload .R")

# set wd to where .hdf files live
setwd (" /Volumes /JUSTJUBBA/Spatial /NDVI MODIS Botswana")

# put each .hdf file in list
out. files <— list.files (getwd (), pattern="hdf$", full.names = F)

# get list of subdatasets from .hdf files , choose subdataset 1 — mean monthly
NDVI
sdsList <— sapply (X= out.files , FUN = function (out. files){get subdatasets(out.

files)[1]})

# see which raster data has more rows/columns between MODIS & WorldClim— must
resample to grid with smallest no. rows/cols
gdalwarp(srcfile= sdsList[1], t _srs="+proj=longlat +datum=WGS84 +no_defs",
dstfile = "/Volumes/JUSTJUBBA/Spatial /NDVIBotsTest. tiff", te = c(bbox(
botswana) [1] , bbox (botswana) [2] , bbox (botswana) [3] , bbox (botswana) [4]))

NDVIRast <— raster ("NDVIBotsTest. tiff")
worldClimRast <— crop(raster ("WorldClim botswana/tmeanl 36.tif"), extent (

botswana ) )

# compare resolution
ncell (NDVIRast); ncell (worldClimRast)

# Notes: NDVI has less cells so re—align WorldClim rasters to that of NDVI
rasters
# Use NDVI as the model raster to get correct dimensions for WorldClim

and NDVI processing

# get sub dataset for each month

# then remove the null entries to get length of list
janList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("001", "002

")) {return(x)}})

janList<—janList [!sapply (janList, is.null)]
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194

195

196

197

198

199

200

201

202

203

febList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("032"
")){return(x)}})

febList<—febList [!sapply (febList , is.null)]

marList <— 1llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("061"
")) {return(x)}})

marList<—marList [!sapply (marList, is.null)]

aprList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("091"
")) {return(x)}})

aprList<—aprList [!sapply (aprList, is.null)]

mayList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("122"
")) {return(x)}})

mayList<—mayList [ ! sapply (mayList, is.null)]

junList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("152"
")) {return(x)}})

junList<—junList [!sapply (junList , is.null)]

julList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("182"
")) {return(x)}})

0| julList <—julList [!sapply(julList , is.null)]

2| augList <— 1llply (sdsList, function (x){if (substr(x, 32, 34) %in% c("213"
g ply , )

")) {return(x)}})

augList <—augList[!sapply (augList, is.null)]

5| sepList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("244"

")) {return(x)}})

i| sepList <—sepList|[!sapply(sepList, is.null)]

;| octList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("274"

"Y){return(x)}})

octList <—octList [!sapply (octList, is.null)]

novList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("305"

")) {return(x)}})

novList <—novList[!sapply(novList, is.null)]

decList <— llply (sdsList, function(x){if (substr(x, 32, 34) %in% c("335"
")) {return(x)}})

5| decList <—decList [!sapply(decList, is.null)]

5|# put above lists into another list for processing

NDVIMonths <— list (janList, febList, marList, aprList, mayList, junList,
julList , augList, sepList, octList, novList, decList)
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"214
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228
220|# loop through each month, looping again through all the years (2000 — 2013)
of data reprojecting , merging tiles and converting to tiff

230|# format for each available month and year in one step

231
232| for (j in 1 : 12){

233 i<—0

234  while (i1 < 14){

235 if (i < 10 & length (NDVIMonths|[[j]][grep(paste0("A200", "", i), NDVIMonths
(i1 1 > 0){

236 gdalwarp (srcfile= NDVIMonths|[[j]][ grep (paste0("A200", "", i), NDVIMonths ||
il 1, t_srs="+proj=longlat +datum=WGS84 +no_defs", dstfile = paste0("
NDVI", j, "200", i, ".tiff"), te = c(bbox(NDVIRast)[1],bbox(NDVIRast)

[2] ,bbox (NDVIRast) [3] ,bbox (NDVIRast) [4]) , tr = c(xres(NDVIRast), yres(
NDVIRast) ) )

237 i<—1i+1

238 }

239 else if (i < 10){

240 print (paste0 ("no data available for month ", j, " and year 200", i))

241 I <—1i+1

242 }

243 else if (i > 9 & length (NDVIMonths|[[j]][grep(paste0("A20", "", i),
NDVIMonths [[j]])]) > 0){

244 gdalwarp (srcfile= NDVIMonths[[j]][ grep (paste0("A20", "", i), NDVIMonths|[ j

11)], t_srs="+proj=longlat +datum=WGS84 +no_defs", dstfile = paste0 ("
NDVI", j, "20", i, ".tiff"),te = c(bbox(NDVIRast)[1],bbox(NDVIRast)
[2] ,bbox (NDVIRast) [3] ,bbox (NDVIRast) [4]) , tr = c(xres(NDVIRast), yres(
NDVIRast) ) )

i<—1i+1

N
=
<3

246 }

247 else if (i > 9 & 1 < 14){

248 print (paste0 ("no data available for month ", j,
249 i<—1i+1

250 }

n

and year 20", i))

254|# (1) intialise empty stack for each climate and environmental factor

255|# (2) for each climate stack except NDVI merge monthly tiles , do appropriate
raster calculations and crop to extent of model NDVI stack then add each
monthly raster layer to the stack in a loop (no

256|# loop needed for altitude)

25714 (3) for the NDVI montly layers apply NDVIRasterFunction to each monthly tiff
image for each year, function involves calculating the mean NDVI value

for each month across all years and cropping to

258|# same extent as botswana using NDVI as model raster
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260|# Notes: temperature layers must be divided by 10 and NDVI layers must be
divided by 10000

261
262|# put all WorldClim images in a list for processing

263 climFilelist <— list.files ("/Volumes/JUSTJUBBA/Spatial/WorldClim Botswana",
pattern="tif$", full.names=T)

264
265|# initialize all climatic and environmental stacks

266| meanTempStack <— stack ()

267| maxTempStack <— stack ()
26| minTempStack <— stack ()
260| rainStack <— stack ()
270| bioStack <— stack ()
271 NDVIStack <— stack ()
272

273 NDVIRasterFunction<— function (y){
274  x <— stack(list.files ("/Volumes/JUSTJUBBA/Spatial /NDVI MODIS Botswana/",
pattern = y, full.names=T))

275|  x <— calc(x, function(z) zx0.0001)
276  x <— mean(x, na.rm = T)

277 x <— crop(x, extent(NDVIRast))

278 return (x)

279| }

280

281 for (i in 1:12){
2s2|  NDVIStack <— stack (NDVIStack, NDVIRasterFunction(paste0 ("NDVI", i, 20)))

285 for (1 in 1 : 12){

286 meanTempStack <— stack (meanTempStack, crop(raster(climFilelist[grep(paste0("
tmean", i, " 36"), climFilelist)])/10, extent (NDVIRast)))

287
288 minTempStack <— stack (minTempStack, crop(raster(climFilelist [grep(paste0("
tmin", i, " 36"), climFilelist)])/10, extent(NDVIRast)))

289
200  maxTempStack <— stack (maxTempStack, crop(raster(climFilelist[grep(paste0O("
tmax", i, " 36"), climFilelist)])/10, extent (NDVIRast)))

201
202|  rainStack <— stack(rainStack, crop(raster(climFilelist|[grep(paste0("prec", i
, " 36"), climFilelist)]), extent(NDVIRast)))

203/ }
294
205 for (i in 1 : 19){
296 if (i < 12){
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207 bioStack <— stack(bioStack, crop(raster(climFilelist[grep(paste0("bio", i,
" 36"), climFilelist)])/10, extent (NDVIRast)))

298 }

299 else{

300 bioStack <— stack(bioStack, crop(raster(climFilelist[grep(paste0("bio", i,
" 36"), climFilelist)]), extent (NDVIRast)))

301 }
302| }
s03| altitudeLayer <— crop(raster ("/Volumes/JUSTJUBBA/Spatial /WorldClim Botswana/
alt_36.tif"), extent (NDVIRast))

304
305
306|# resample WolrdClim layers to that of model NDVI layers
307| meanTempStack <— resample (meanTempStack, NDVIStack)

30s| minTempStack <— resample (minTempStack, NDVIStack)

300| maxTempStack <— resample (maxTempStack, NDVIStack)

310l rainStack <— resample(rainStack , NDVIStack)

311] bioStack <— resample(bioStack, NDVIStack)

312| altitudeLayer <— resample(altitudeLayer , NDVIStack)

314|#A caclulate min annual temp

315| minAnnualTempLayer <— (minTempStack [[1]] + minTempStack [[2]] + minTempStack
[[3]] + minTempStack|[[4]] + minTempStack [[5]] + minTempStack[[6]] +
minTempStack [[7]] + minTempStack [[8]] + minTempStack [[9]] + minTempStack
[[10]] + minTempStack[[11]] + minTempStack[[12]]) /12

317|# name each layer in stack indicating appropriate month

318| names (NDVIStack) <— rep(paste0 ("NDVI", 1:12))

319| names (rainStack) <— rep(paste0("rain", 1:12))

320| names (meanTempStack) <— rep(paste0 ("meanTemp", 1:12))

321| names (maxTempStack ) <— rep (paste0 ("maxTemp", 1:12))

322| names (minTempStack) <— rep(paste0 ("minTemp", 1:12))

323| names (bioStack) <— rep(paste0("bio", 1:19))

324| names (minAnnualTempLayer) <— "minAnnualTemp"

325| names (altitudeLayer) <— "altitude"

326

327

328|# create multilayered spatial database — last step #

329

330|# write SpatialPointsDataFrame values to polygon that are inside Botswana

331| writeOGR (sitesSpdf, dsn = "getwd ()", layer = ’sitesBots’, driver = 'ESRI
Shapefile’, overwrite = T)

332

333|# read polygon as a new SPDF object
334 sitesPolyPoints = readOGR("getwd ()", "sitesBots")

335

93




337

338

339

340

341

342

343

344

346

360

361

362

363

364

365

366

367

368

369

;|# add coords onto @data component of SPDF

sitesPolyPoints@Qdata = cbind(sitesPolyPoints@data , sitesPolyPoints@coords)

# extract raster values at matching coords and add to @Qdata component for each
climate layer in stack

# then give layers column names and append them to the SPDF

rainLayers <— raster ::: extract (rainStack , as(sitesPolyPoints, "
SpatialPoints"))

colnames(rainLayers) <— rep(paste0("rain", 1:12))

sitesPolyPoints@data <— cbind(sitesPolyPoints@data, rainLayers)

meanTempLayers <— raster ::: extract (meanTempStack, as(sitesPolyPoints
, "SpatialPoints"))

7| colnames (meanTempLayers) <— rep(paste0("meanTemp", 1:12))
sitesPolyPoints@Qdata <— cbind (sitesPolyPoints@data , meanTempLayers)
maxTempLayers <— raster ::: extract (maxTempStack, as(sitesPolyPoints,

"SpatialPoints"))
colnames (maxTempLayers) <— rep(paste0 ("maxTemp", 1:12))
sitesPolyPoints@Qdata <— cbind (sitesPolyPoints@data , maxTempLayers)

minTempLayers <— raster ::: extract (minTempStack, as(sitesPolyPoints,
"SpatialPoints"))
colnames (minTempLayers) <— rep(paste0 ("minTemp", 1:12))

i| sitesPolyPoints@data <— cbind (sitesPolyPoints@data , minTempLayers)

;| NDVILayers <— raster ::: extract (NDVIStack, as(sitesPolyPoints, "

SpatialPoints"))
colnames (NDVILayers) <— rep(paste0 ("NDVI", 1:12))
sitesPolyPoints@data <— cbind(sitesPolyPoints@data , NDVILayers)
bioLayers <— raster ::: extract (bioStack, as(sitesPolyPoints, "
SpatialPoints"))
colnames (bioLayers) <— rep(paste0("bio", 1:19))
sitesPolyPoints@data <— cbind(sitesPolyPoints@data, bioLayers)

minAnnualTemp <— raster ::: extract (minAnnualTempLayer, as(
sitesPolyPoints , "SpatialPoints"))
sitesPolyPoints@data <— cbind(sitesPolyPoints@data , minAnnualTemp)

altitude <— raster ::: extract (altitudeLayer ,as(sitesPolyPoints, "

SpatialPoints") )
sitesPolyPoints@data <— cbind(sitesPolyPoints@data , altitude)
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373|# assign SPDF to DF for caclulation convenience

374|s.p <— as.data.frame(sitesPolyPoints)

376|7# subset meanTemp variables

rep (paste0 ("meanTemp" , 1:12)))

377| s .pTemp <— subset(s.p, select
378| s. pRain <— subset(s.p, select = rep(paste0("rain", 1:12)))
379| s .pNDVI <— subset(s.p, select = rep(paste0("NDVI", 1:12)))

381|# caclulate annual std deviation of monthly variables
352| s . p$SDTemp <— apply (s.pTemp, 1, sd)
383| s .p$SDRain <— apply (s.pRain, 1, sd)
384 s . p$SDNDVI <— apply (s.pNDVI, 1, sd)

386| s . p$totTemp <— apply (s.pTemp, 1, sum)
357] s .p$totRain <— apply(s.pRain, 1, sum)
388| s . p$totNDVI <— apply (s.pNDVI, 1, sum)
389
390|# summer (months 12, 1, 2, 3) and winter caclulations (4,5,6,7,8,9,10)
391
n

302| s . p$summerTemp <— apply (s.p[c("meanTempl2", "meanTempl", "meanTemp2",

meanTemp3") ], 1, mean)

303| s.pSwinterTemp <— apply (s.p[c("meanTemp4", "meanTemp5", "meanTemp6",6 "
meanTemp7" , "meanTemp8" , "meanTemp9" ,"meanTempl0")], 1, mean)
304 s . p$summerRain <— apply(s.p[c("rainl2", "rainl", "rain2", "rain3")], 1, mean)
305| s.p$winterRain <— apply(s.p[c("raind4", "rain5", "rain6", "rain7", "meanTemp8"
"rain9" ,"rainl0")], 1, mean)

306] s . p$summerNDVI <— apply (s.p[c("NDVI12", "NDVI1", "NDVI2", "NDVI3")], 1, mean)
307| s . p$winterNDVI <— apply (s.p[c("NDVI4" | "NDVI5" | "NDVI6", "NDVI7", "NDVI8" 6 "
NDVI9" ,"NDVI10")], 1, mean)

398
390| meanTempCols <— rep(paste0 ("meanTemp", 1:12))
200/ rainCols <— rep(paste0("rain", 1:12))

101/ NDVICols <— rep (paste0("NDVI", 1:12))

402
403|# rainfall concentration index and mean peak month around which rainfall is
concentrated calculations #

404

angle <— rep(paste0("angle", 1:12))

o
it

16| s.pRain[angle] <— NA
407
aos| for (1 in 1:12){

200| s.pRain[angle|[i] <— (i%2xpi)/12
410] }
411
412/ rl <— rep(paste0("r1", 1:12))
113/ 12 <— rep(paste0("r2", 1:12))
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416

417

418

419

420

421

422

423

424

426

427

428

429

430

431

432

434

435

436

437

438

439

440

441

442

443

446

s.pRain[rl] <— NA
s.pRain[r2] <— NA

for (i in 1:12){
s.pRain[rl][i] <— s.pRain|[rainCols|[i]|#*cos(s.pRain|[angle]|[i])
s.pRain[r2][i] <— s.pRain[rainCols|[i]*sin(s.pRain[angle][i])

s.pRain$r <— sqrt ((apply(s.pRain|[rl], 1, sum))"2 + (apply(s.pRain|[r2], 1, sum
1% q pply b pply 1%
)"2)

# concentration index
s.p$rCIndex <— (100*s.pRain$r)/s.pStotRain

# mean peak month around which rainfall is concentrated

s.p$q <— atan(apply(s.pRain[r2], 1, sum)/apply(s.pRain[rl], 1, sum))

+# save workspace and write DF containing spatial database to table for later
use

save.image('spatial Bots.RData’)

write.table(s.p, "/Volumes/JUSTJUBBA/Spatial/s.pBots")

# create prediction grid covering Botswana

# Notes: The same code principles apply as with the compilation of the spatial

database above except at a lower resolution.

# Instead of extracting values at sample points all of the raster data
is used so

+# that an environmental or climatic value is present for each grid cell

All raster images

+# are stored in stacks and the same process as above is used to get a
corresponding attribute for each cell.

# Therefore this code is omitted.

# a prediction grid prepared using similar raster calculations as above

# covering Botswana at a 20km resolution was written to a table called
gridPredBots20km :

write.table (grid20, "/Volumes/JUSTJUBBA/Spatial/gridPredBots20km")

#
# Model Building: Non—spatial analysis #
#
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453|# create a df with only the variables of interest

154| spatialVars = s.p[which(colnames(s.p) %in% c(c("Pos", "Examined", "DstTCIW",
"NDVI", "altitude", "SDTemp", "SDNDVI", "SDRain", "q", "rClndex", "
summerTemp" , "winterTemp", "summerNDVI", "winterNDVI" 6 "summerRain" 6 "

winterRain", "totRain"), rep(paste0("bio", 1:19))))]

456|# randomly partition data keeping 85% for derivation data set

157| derivindex <— createDataPartition (spatialVars$Pos, p = .85, list = F, times =

1)

459|# create validation and derivation

160 spatialVarsDeriv <— spatialVars| derivindex ,]|

o

spatialVarsTest <— spatialVars[—derivindex ,]|
462
463 #A standardise variables

164 spatialVars|[,3:36] <— scale(spatialVars|[,3:36])
465

a66|# 34 explanatory variables at start

467

468|# Univariate Logistic Regression — Model Building

469

470| AICList <—lapply (c(c( "DstTCIW", "NDVI", "altitude", "SDTemp", "SDNDVI",K6 "
SDRain", "q", "rCIlndex", "summerTemp", "winterTemp", "summerNDVI" 6 "
winterNDVI" | "summerRain", "winterRain", "totRain" ), rep(paste0("bio",
1:19))),

471 function (var){

472 formula <— as.formula(paste("Pos/Examined 7", var))

473 nonSpatialUniVar <— glm(formula, data = spatialVarsDeriv, weights =

Examined, family = binomial)
474 cbind (summary (nonSpatialUniVar)$aic, exp(summary(nonSpatialUniVar)$coef|[, "

Estimate"]), summary(nonSpatialUniVar)$coef[, "Pr(>|z])"])
45| })

a76|# http://rstudio—pubs—static.s3.amazonaws.com/2989
ceae90d128554c¢728d5388439adf0661 . html access: 28 Feb

a79|# put list into matrix

4s0/m <— matrix(unlist (AICList), ncol=6, byrow=TRUE)
481
ag2|# delete 1st, 3rd, 5th column (intercept details not required)
as3lm <— m|,—c(1 , 3, 5)]

485|# make col and row names nameable

46| dimnames (m) <— list (rownames(m, do.NULL = FALSE, prefix = "row"), colnames (m,
do.NULL = FALSE, prefix = "col"))
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488

489

490

491

492

507

508

509

# name columns

colnames (m) <— c("AIC", "OR", "Pr(>|z]|)")

# name rows
rownames (m) <— c(c("DstTCIW", "NDVI", "altitude", "SDTemp", "SDNDVI", "SDRain"
, "q", "rClndex", "summerTemp", "winterTemp", "summerNDVI" 6 "winterNDVI",

"summerRain", "winterRain", "totRain" ), rep(paste0("bio", 1:19)))

# rank matrix from lowest AIC to highest

5| AICMatrix <— m[order (m[,1]) ,]

preserve the order of univariate AIC rankings in columns of df

colTestCols <— paste0 (rownames ( AICMatrix) [1: nrow (AICMatrix) |)

spatialVarsDerivColTest <— as.data.frame(spatialVarsDeriv[colTestCols])

# get column names for temp and rain related vars

tempThemeCols <— pasteO(c("biol", "bio2", "bio3", "bio4", "bio5", "bio6", "
bio7", "bio8", "bio9", "biol0", "bioll", "summerTemp", "winterTemp",6 "
SDTemp" ) )

rainThemeCols <— paste0(c("biol2", "biol3", "biold", "biol5", "biol6", "biol7"

"biol8", "biol9", "totRain", "summerRain", "winterRain", "SDRain", "q",

"rClndex"))

NDVIThemCols <— paste0 (c("NDVI", "summerNDVI", "winterNDVI" & "SDNDVI")

# to preserve the order of columns by AIC rank remove all non—theme related
vars from original df leaving only AIC ordered themed vars

tempTheme <— spatialVarsDerivColTest[—which(colnames(spatialVarsDerivColTest)
%in%c (c(rainThemeCols), c¢("NDVI", "summerNDVI" [ "winterNDVI"  "SDNDVI" 6 "
DstTCIW" , "altitude")))]

rainTheme <— spatialVarsDerivColTest[—which(colnames(spatialVarsDerivColTest)
%in% c(c(tempThemeCols), c¢("NDVI", "summerNDVI" 6 "winterNDVI" 6 "SDNDVI" 6 "
DstTCIW" , "altitude")))]

NDVITheme <— spatialVarsDerivColTest|[—which(colnames(spatialVarsDerivColTest)
%in% c(c(tempThemeCols), c(rainThemeCols), c("DstTCIW", "altitude")))]

3 #A function checks for multicolinearity in each theme
#A set exact — F for appropriate asmyptotic methods to handle presence of ties
corrFunctionTheme <— function (varX, varDf){
# create matrix to store multicolinearity test results per variable
tst <— matrix(data = NA, nrow = ncol(varDf), ncol = 4)
# name columns
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dimnames(tst) <— list (rownames(tst, do.NULL = FALSE, prefix = "row"),
colnames (tst , do.NULL = FALSE, prefix = "col"))
colnames(tst) <— c¢("Upper p", "Lower p", "Two.sided p", "rho")

for (i in l:ncol(varDf)){
tst[i,1] = cor.test(varX, varDf[,i], method
exact = F)$p.value
tst[i,2] = cor.test(varX, varDf[,i], method
exact = F)$p.value
tst[i,3] = cor.test(varX, varDf[,i]|, method
.sided", exact = F)3$p.value
tst[i,4] = cor.test(varX, varDf[,i], method

.sided", exact = F)$estimate

"spearm" , alternative

"spearm" , alternative

"spearm" , alternative

"spearm" | alternative

rownames (tst)[i] = names(varDf)[i]

}

return (tst)

|llll
I

"two

"two

4|# test multicollinearity among all variables and rank from lowest to highest

according to Spearman’s r and check if r > 0.85

5|# criteria for excluding a variable: keep variable with lowest AIC from

univariate analysis in the presence of collinearity

5|# starting with lowest ranked AIC variable in each theme

# so that everything correlated to it will have a higher AIC and can be

removed

# at each round the variable tested, with lowest AIC, is put into a list

# initialize lists

tempThemeKept <— list (
tempThemeRemoved <— list (
rainThemeKept <— list (
rainThemeRemoved <— list (
NDVIThemeKept  <— list ()
;| NDVIThemeRemoved — <— list ()

3|# runs until one var remains in themed df
0|# Temperature theme
while (ncol(tempTheme) > 1){

# perform correlation test

corrTemp <— corrFunctionTheme (varX = tempTheme[,1] , varDf =

tempTheme )
corrTempRanked <— corrTemp |[order (abs(corrTemp]|,4])) ,]
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566

567

568

569

570

S

corrTempVars <— corrTempRanked [ which (abs (corrTempRanked [,4]) > 0.85),
arr.ind = TRUE]

# whether or not correlated tested var always kept — lowest AIC

tempThemeKept [ length (tempThemeKept) +1] <— list (colnames (tempTheme) [1])
# add lowest ranking AIC var to list

# else if statement needed becasue row names disappear when only 1 row

remains in matrix

if (length (nrow(corrTempVars)) < 1) {
tempThemeRemoved [ length (tempThemeRemoved) +1] <— list (NA)
tempTheme <— tempTheme[—which (
colnames (tempTheme) %in% colnames (tempTheme) [1]) |
} else{
if (nrow(corrTempVars) — 2) {
ind = which (rownames(corrTempVars) != colnames (tempTheme) [1])
tempThemeRemoved [length (tempThemeRemoved ) +1] <— rownames (
corrTempVars) [ind |
tempTheme <— tempTheme[—which (colnames (tempTheme) %in% rownames (
corrTempVars) ) |
b else{
tempThemeRemoved [length (tempThemeRemoved ) +1] <— list (rownames (
corrTempVars[—which (rownames (corrTempVars) %in% colnames (
tempTheme) [1]) ,]))
tempTheme <— tempTheme|[—which (colnames (tempTheme) %in% rownames (
corrTempVars) ) |

3|# Rain theme

while (ncol(rainTheme) > 1){

# perform correlation test

corrRain <— corrFunctionTheme (varX = rainTheme[,1] , varDf =
rainTheme )

corrRainRanked <— corrRain[order (abs(corrRain[,4])) ]

corrRainVars <— corrRainRanked [ which (abs(corrRainRanked [,4]) > 0.85),
arr .ind = TRUE]

# whether or not correlated tested var always kept — lowest AIC
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598

599

600

601

602

603

604

605

606

607

608

609

612

613

614

615

617

618

619

620

rainThemeKept [length (rainThemeKept) +1] <— list (colnames (rainTheme) [1])
# add lowest ranking AIC var to list

# else if statement needed because row names disappear when only 1 row

remains in matrix

if (length(nrow(corrRainVars)) < 1) {
rainThemeRemoved [ length (rainThemeRemoved) +1] <— list (NA)
rainTheme <— rainTheme[—which (
colnames (rainTheme) %in% colnames(rainTheme) [1]) ]
} else{
if (nrow(corrRainVars) — 2) {
ind = which (rownames(corrRainVars) != colnames(rainTheme) [1])
rainThemeRemoved [length (rainThemeRemoved ) +1] <— rownames (
corrRainVars) [ind |
rainTheme <— rainTheme[—which (colnames (rainTheme) %in% rownames (
corrRainVars)) |
} else{
rainThemeRemoved [length (rainThemeRemoved) +1] <— list (rownames (
corrRainVars[—which (rownames (corrRainVars) %in% colnames (
rainTheme) [1]) ,]))
rainTheme <— rainTheme[—which (colnames (rainTheme) %in% rownames (

corrRainVars)) |

;| #+ NDVI theme

while (ncol (NDVITheme) > 1){

# perform correlation test

corrNDVI <— corrFunctionTheme (varX = NDVITheme[,1] , varDf =
NDVITheme )

corrNDVIRanked <— corrNDVI[order (abs(corrtNDVIJ[,4])) ,]

corrNDVIVars <— corrNDVIRanked [ which (abs (corrNDVIRanked [,4]) > 0.85),
arr.ind = TRUE]

# whether or not correlated tested var always kept — lowest AIC
NDVIThemeKept [ length (NDVIThemeKept) +1] <— list (colnames (NDVITheme) [1])

# add lowest ranking AIC var to list
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630 # else if statement needed because row names disappear when only 1 row
remains in matrix

631

632 if (length (nrow(corrNDVIVars)) < 1) {

633 NDVIThemeRemoved [ length (NDVIThemeRemoved) +1] <— list (NA)

634 NDVITheme <— NDVITheme[—which (
colnames (NDVITheme) %in% colnames(NDVITheme) [1]) ]

635 } else{

636 if (nrow(corrNDVIVars) — 2) {

637 ind = which (rownames(corrNDVIVars) != colnames (NDVITheme) [1])

638 NDVIThemeRemoved [ length (NDVIThemeRemoved ) +1] <— rownames (

corrNDVIVars) [ind |
639 NDVITheme <— NDVITheme[—which (colnames (NDVITheme) %in% rownames (

corrNDVIVars) ) |

640 } else{

641 NDVIThemeRemoved [ length (NDVIThemeRemoved) +1] <— list (rownames (
corrNDVIVars[—which (rownames (corrNDVIVars) %in% colnames (
NDVITheme) [1]) ,]))

642 NDVITheme <— NDVITheme[—which (colnames (NDVITheme) %in% rownames (
corrNDVIVars)) |

643 }

644 }

645
646| }
647

648|# left with tempThemeKept, rainThemeKept, NDVIThemeKept, DstTCIW, altitude

649
650

651 | #44 STAGE 3 4444

652

653 spatialVarsDerivDf = spatialVarsDeriv [which(colnames(spatialVarsDeriv) %in% c

c (tempThemeKept, rainThemeKept, NDVIThemeKept c("DstTCIW", "altitude"
(c(temp pt, pt, pt) , : ;
"Pos", "Examined")))]

655| fit . Stage3 <— glm(Pos/Examined ~ bio9+SDTemp+bio5-+summerTemp+bio3+bio7+rCIndex
+biol3+biol9+biol4d+totRain+biol8+tsummerNDVIHDstTCIW-+altitude , weights =

Examined, data = spatialVarsDerivDf, family="binomial")

657|# this will yield a basic candidate model (Candidate List: )

655| bootGLM . Stage3 <— boot.stepAIC(fit .Stage3, spatialVarsDerivDf, direction = "
backward", alpha = 0.05, B = 1000)

659
660| fitTest .1 <— glm(Pos/Examined ~ bio9 , weights = Examined, data =
spatialVarsDerivDf, family="binomial")

661 summary (fitTest . 1)
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78| summary (fit Test .6)

fitTest .2 <— glm(Pos/Examined ~
Examined, data =

summary ( fitTest .2)

fitTest.3 <— glm(Pos/Examined ~
Examined, data =
summary (fitTest .3)

fitTest .4 <— glm(Pos/Examined ~

Examined, data = spatialVarsDerivDf,

summary (fitTest .4)

exclude

fitTest .7

= Examined, data =

<— glm(Pos/Examined ~

summary (fitTest .7) # exclude SDTemp

fitTest .8

= Examined, data =

<— glm(Pos/Examined ~
summary (fitTest .8)

fitTest .9 <— glm (Pos/Examined ~

weights = Examined, data = spatialVarsDerivDf

summary (fitTest .10)

fitTest .10
rCIndex
)

summary (fitTest .11) exclude

fitTest .11 <— glm(Pos/Examined ~
bio3, weights = Examined,
summary (fitTest .12) # exclude bio3

spatialVarsDerivDf ,

spatialVarsDerivDf ,

<— glm(Pos/Examined ~

weights = Examined, data =

data = spatialVarsDerivDf

bio9 + altitude , weights =
family="binomial")

bio9 + altitude + biob , weights =
family="binomial")

bio9+altitude+biob+bio7 , weights =

family="binomial")

fitTest .5 <— glm(Pos/Examined ~ bio9+altitude+bio5+bio7+summerTemp,
weights = Examined, data = spatialVarsDerivDf, family="binomial")
summary (fitTest .5) # exclude summerTemp
7| fitTest .6 <— glm(Pos/Examined =~ bio9+altitude+bio5+bio7+summerNDVI,
weights = Examined, data = spatialVarsDerivDf, family="binomial")

summerNDVI

bio9+altitude+bio5+bio7+SDTemp , weights

spatialVarsDerivDf, family="binomial")

bio9+altitude+bio5+bio74+DstTCIW, weights

spatialVarsDerivDf, family="binomial")

bio9+altitude+biobs+bio7+DstTCIW+biol8

family="binomial")

bio9+altitude+biob+bio7+DstTCIW+biol8+

spatialVarsDerivDf, family="binomial"

rClndex

bio9+altitude+biob+bio7+DstTCIW+biol 8+

family="binomial")
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fitTest .12 <— glm(Pos/Examined ~ bio9+altitude+bio5+bio7+DstTCIW+biol8+
totRain, weights = Examined, data = spatialVarsDerivDf, family="binomial")

summary (fitTest .13)

fitTest .13 <— glm(Pos/Examined ~ bio9+altitude+bio5+bio7+DstTCIW+biol8+
totRain+biol3, weights = Examined, data = spatialVarsDerivDf, family="
binomial")

summary (fitTest .14) # exclude biol3

fitTest .14 <— glm(Pos/Examined ~ bio9+altitude+bio5+bio7+DstTCIW+biol8+
totRain+biol9, weights = Examined, data = spatialVarsDerivDf, family="
binomial")

summary (fitTest .15) # exclude biol9

fitTest .15 <— glm (Pos/Examined ~ bio9+altitude+bio5+bio7+DstTCIW+biol8+
totRain+biold , weights = Examined, data = spatialVarsDerivDf, family="
binomial")

summary (fitTest .16) # exclude biol4

# Stage 4: bio9+altitude+biods+bio74+DstTCIW+biol8+totRain

;|# further tests based on enviro themes of previously excluded variables

#A criteria: bring variables that were exlcuded (high correlation + AIC
ranking) into candidate model (consider bootGLM + manual stepwise) and re—
assess based on

# frequency of selection in bootsrapped samples (and if variable was not
excluded by stepAIC() algorithm)

# kept bio9 ahead of bio6+biol+winterTemp+bioll

fit.1 <— glm(Pos/Examined ~bio9+altitude+bio5+bio7+DstTCIW+biol8+totRain+bio6+
biol+winterTemp+bioll, weights = Examined, data = spatialVarsDeriv, family
= "binomial")
bootGLM.1 <— boot.stepAIC(fit .1, spatialVarsDeriv, direction = "backward",
alpha = 0.05, B = 1000) / keep winterTemp instead of bio9
5|# kept biob ahead of biolO

fit.2 <— glm(Pos/Examined ~winterTemp+altitude+bio5+bio7+DstTCIW+biol8+totRain
+biol0, weights = Examined, data = spatialVarsDeriv, family = "binomial™)
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bootGLM .2 <— boot.stepAIC(fit .2, spatialVarsDeriv, direction = "backward",
alpha = 0.05, B = 1000) # keep bio5

# kept bio7 ahead of bio2
fit .3 <— glm(Pos/Examined ~winterTemp+altitude+biobs+bio7+DstTCIW+biol8+totRain

+bio2, weights = Examined, data = spatialVarsDeriv, family = "binomial™)

bootGLM .3 <— boot.stepAIC(fit .3, spatialVarsDeriv, direction = "backward",
alpha = 0.05, B = 1000) # keep bio7

# kept totRain ahead of biol2
fit.4 <— glm(Pos/Examined ~winterTemp+altitude+bio5s+bio7+DstTCIW+biol8+totRain

+biol2, weights = Examined, data = spatialVarsDeriv, family = "binomial")

bootGLM .4 <— boot.stepAIC(fit .4, spatialVarsDeriv, direction = "backward",
alpha = 0.05, B = 1000) # keep totRain

fit.Stageb <— glm(Pos/Examined ~winterTemp+altitude+bio5+bio7+DstTCIW+biol8+
totRain, weights = Examined, data = spatialVarsDeriv, family = "binomial")

bootGLM . Stage5 <— boot.stepAIC(fit .Stage5, spatialVarsDeriv, direction = "
backward", alpha = 0.05, B = 1000)

# End Stage 5 model: winterTemp+taltitude+biob+bio7+DstTCIW+biol8+totRain

## end non—spatial model building

Spatial Analysis

4|# using full dataset keep only Stage 5 variables

dfFull = s.p[which(colnames(s.p) %in% c(c("Pos", "Examined", "Lon", "Lat", "
winterTemp" ,"altitude","bio5" ,"bio7" ,"DstTCIW" ,"biol8" ,"totRain")))]

# using derivation dataset

dfFull = s.p[derivindex ,][which(colnames(s.p[derivindex ,|) %in% c(c("Pos", "
Examined", "Lon", "Lat", "winterTemp" 6 "altitude" ,"bio5" ,"bio7"  "DstTCIW",
"biol8" ,"totRain")))]

# the following code demonstrates the spatial model for the full dataset the

same workings apply when using only the derivation data

# transform DF to a SPDF
coordinates (dfFull) <— cbind ("Lon", "Lat")
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# standardise data

dfFull@data[,3:9] <— scale(dfFull@data[,3:9])

s|# run a non—spatial GLM to obtain starting values for the MH step

dfFull = s.p[derivIindex ,|[which(colnames(s.p[derivindex ,]) %in% c(c("Pos", "
Examined", "Lon", "Lat", "winterTemp","altitude","bio5" ,"bio7" ,"DstTCIW" ,
"biol8" ,"totRain")))]

#starting values from non—spatial analysis for beta

fit <— glm(Pos/Examined ~ winterTemp+altitude+bio5+bio7+DstTCIW+biol8+totRain ,
weights = Examined, data = dfFull , family=binomial("logit"))

beta.starting <— coefficients (fit)

# use the variance covariance matrix as the proposal (tuning) distribution for
the MH step
beta.tuning <— t(chol(vcov(fit)))

# get maximum FEuclidean distance between sites

d.max <— max(iDist (dfFull@coords))

# this defines the number of simulations to be run in batches each of certain
length as well the burn in period

n.batch <— 3500

batch.length <— 100

n.samples <— n.batchxbatch.length

burn.in <— 0.8xn.samples

# 3 spatial GLMMs are run as follows
notes: effective range of the spatial weights is controlled by phi and is
roughly 3/phi
# posterior inference is based on three MCMC chains each of length 350

000

ml. Full <— spGLM(Pos ~ winterTemp+taltitude+bio5+bio74+DstTCIW+biol8+totRain ,
data = dfFull,
weights= dfFull@data$Examined, family = "binomial", coords =
dfFull@coords ,
starting = list ("beta" = beta.starting, "phi" = 3/(0.5*d.max

), "sigma.sq" = 1, "w" = 0),

tuning = list ("beta" = beta.tuning, "phi" = 0.06, "sigma.
sq" = 0.5, "w" = 0.5),

priors = list (phi.Unif = ¢(3/d.max, 3/(0.1%d.max)), "sigma

.sq.IG" = ¢(2,1)),

106




798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

818

819

820

821

amcmc = list (n.batch = n.batch, batch.length = batch.length ,
accept.rate = 0.43),

cov.model = "exponential", verbose = T, n.report = 1)

m2. Full <— spGLM(Pos ~ winterTemp+taltitude+bio5+bio74+DstTCIW+biol8+totRain ,
data = dfFull,

weights= dfFull@data$Examined, family = "binomial", coords =
dfFull@coords ,
starting = list ("beta" = beta.starting, "phi" = 3/(0.5*d.max
), "sigma.sq" = 1, "w" = 0),
tuning = list ("beta" = beta.tuning, "phi" = 0.06, '"sigma.
sq" = 0.5, "w" = 0.5),
priors = list (phi.Unif = ¢(3/d.max, 3/(0.1%d.max)), "sigma

.sq.IG" = ¢(2,1)),
amcmc = list (n.batch = n.batch, batch.length = batch.length ,
accept.rate = 0.43),

cov.model = "exponential", verbose = T, n.report = 1)

m3. Full <— spGLM(Pos ~ winterTemp+altitude+bio5+bio74+DstTCIW+biol8+totRain ,
data = dfFull,

weights= dfFull@data$Examined, family = "binomial", coords =
dfFull@coords ,
starting = list ("beta" = beta.starting, "phi" = 3/(0.5%d.max
), "sigma.sq" = 1, "w'" = 0),
tuning = list ("beta" = beta.tuning, "phi" = 0.06, '"sigma.
sq" = 0.5, "w" = 0.5),
priors = list (phi.Unif = ¢(3/d.max, 3/(0.1*d.max)), "sigma

.sq. IG" = ¢(2,1)),
amcmc = list (n.batch = n.batch, batch.length = batch.length ,
accept.rate = 0.43),

cov.model = "exponential", verbose = T, n.report = 1)

# consolodate posteriors to perform convergence diagnostics on the fit of the
spGLM MCMC chains

posteriors <— as.mcmec. list (list (ml. Full$p.beta.theta.samples ,m2. Full$p.beta.
theta.samples, m3. Full$p.beta.theta.samples))

822|# compute Gelman diagnostics to assess convergence. These compare within—

chain to

3|# between—chain variability. Values near 1 suggest full convergence.

print (gelman.diag(posteriors))

#A define samples taken after burn in

g| sub.samps <— burn.in:n.samples
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832

833

834
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837

quantile (ml. Full$p.beta.theta.samples[sub.samps,1], prob=c(0.025, 0.975))
quantile (ml. Full$p.beta.theta.samples|[sub.samps,2]|, prob=c(0.025, 0.975))
quantile (ml. Full$p. beta.theta.samples[sub.samps,3], prob=c(0.025, 0.975))
quantile (ml. Full$p.beta.theta.samples|[sub.samps,4]|, prob=c(0.025, 0.975))
quantile (ml. Full$p.beta.theta.samples|[sub.samps,5|, prob=c(0.025, 0.975))
quantile (ml. Full$p.beta.theta.samples[sub.samps,6], prob=c(0.025, 0.975))
quantile (ml. Full$p.beta.theta.samples[sub.samps,7]|, prob=c(0.025, 0.975))
s3s] quantile (ml. Full$p. beta.theta.samples|[sub.samps,8], prob=c(0.025, 0.975))
quantile (ml. Full$p.beta.theta.samples[sub.samps,9], prob=c(0.025, 0.975))
quantile (ml. Full$p.beta.theta.samples|[sub.samps,10], prob=c(0.025, 0.975))

840

841

842

843

844

845

846

847

848

849

# credibility intervals for each simulated regression and variance parameter

estimated

# odds ratio calculated for each simulated paramater’s mean and credibility
intervals

# calculated on odds ratio scale via exponentiation of paramater’s coefficent

# Intercept odds ratio
intercept <— c(exp(mean(ml.Full$p.beta.theta.samples|[sub.samps,1])), exp(
quantile (ml. Full$p.beta.theta.samples|[sub.samps,1]|, prob=c(0.025, 0.975)))

)

# winterTemp odds ratio
winterTemp <— c(exp(mean(ml.Full$p.beta.theta.samples|[sub.samps,2])), exp(
quantile (ml. Full$p.beta.theta.samples|[sub.samps,2]|, prob=c(0.025, 0.975)))

)

# altitude odds ratio
altitude <— c(exp(mean(ml.Full$p.beta.theta.samples|[sub.samps,3])), exp(
quantile (ml. Full$p.beta.theta.samples|[sub.samps,3]|, prob=c(0.025, 0.975)))

)

# biob odds ratio

5/ bio5 <— c(exp(mean(ml. Full$p.beta.theta.samples[sub.samps,4])), exp(quantile(

ml. Full$p.beta.theta.samples[sub.samps,4], prob=c(0.025, 0.975))))

# bio7 odds ratio

858] bio7 <— c(exp(mean(ml. Full$p.beta.theta.samples[sub.samps,5])), exp(quantile (

862

863

ml. Full$p.beta.theta.samples|[sub.samps,5], prob=c(0.025, 0.975))))
# DstTCIW odds ratio

DstTCIW <— c(exp(mean(ml. Full$p.beta.theta.samples|[sub.samps,6])), exp(
quantile (ml. Full$p.beta.theta.samples|[sub.samps,6], prob=c(0.025, 0.975)))

)

# biol8 odds ratio
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biol8 <— c(exp(mean(ml. Full$p.beta.theta.samples[sub.samps,7])), exp(quantile (
ml. Full$p.beta.theta.samples|[sub.samps,7], prob=c(0.025, 0.975))))

# totRain odds ratio
totRain <— c(exp(mean(ml.Full$p.beta.theta.samples|sub.samps,8])), exp/(
quantile (ml. Full$p.beta.theta.samples[sub.samps,8], prob=c(0.025, 0.975)))

)

# sigma.sq odds ratio

70| sigma.sq <— c(exp(mean(ml.Full$p.beta.theta.samples|[sub.samps,9])), exp(

quantile (ml. Full$p.beta.theta.samples|[sub.samps,9], prob=c(0.025, 0.975)))

)

2|# phi odds ratio

phi <— c(exp(mean(ml. Full$p.beta.theta.samples|[sub.samps,10])), exp(quantile(
ml. Full$p.beta.theta.samples|[sub.samps,10], prob=c(0.025, 0.975))))

i|# spatial prediction #

# prepare grid for prediction of gridded sites across Botswana

9|# 20 km resolution

# read in prediction grid

grid20 <— read.table (" Volumes/JUSTJUBBA/Spatial /gridPredBots20km . txt")

# keep only relevant explanatory variables
pred.grid20 <— grid20[which(colnames(grid20) %in% c("Lon", "Lat", "winterTemp"
,"altitude","bio5" ,"bio7" ,"DstTCIW" ,"biol8" ,"totRain")) ]

# convert DF to gridded SPDF and set correct projection

coordinates (pred.grid20) <— cbind("Lon", "Lat")

gridded (pred.grid20) <— TRUE

projdstring (pred.grid20) <— "+proj=longlat +datum=WGS84 +no_ defs +ellps=WGS4
+towgs84=0,0,0"

pred.coords20 <— pred.grid20@coords
pred.covars20 <— scale(pred.grid20@data)

#A run prediction command spPredict in order to get a prediction of malaria
risk at each cell for all MCMC samples using one spGLM chain
ml.pred.Full .20 <— spPredict (ml.Full, pred.coords = pred.coords20, pred.covars

= as.matrix (cbind (1,pred.covars20)),start=burn.in)

# mean and standard deviation of prediction probability at each cell

y.pred.grid.prob.mu <— apply(ml.pred.Full.208p.y.predictive.samples,l ,mean)
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y.pred.grid.prob.sd <— apply(ml.pred.Full.208p.y.predictive.samples,1, sd)

# plot predicted mean probability of malaria risk at 20km resolution

# requires mba.surf to yield interpolation surfaces at 100x100 resolution on
the x and y axis

res <— 100

surf <— mba.surf(cbind (pred.grid20@coords, y.pred.grid.prob.mu), res, res,
extend=TRUE, sp=TRUE)$xyz.est

plot (botswana)

image . plot (as.image.SpatialGridDataFrame (surf), asp=1.25, add = T)

plot (dfFull, add = T, pch = 20, cex = 0.3, col = ’black’)

plot (botswana, add= T)

title (main="Predicted mean probability of malaria risk— 20km grid")

# plot predicted standard deviation of malaria risk at 20km resolution

res <— 100

surf <— mba.surf(cbind(pred.grid20@coords, y.pred.grid.prob.sd), res, res,
extend=TRUE, sp=TRUE)$xyz.est

plot (botswana)

image . plot (as.image.SpatialGridDataFrame (surf), asp=1.25, add = T)

plot (dfFull, add = T, pch = 20, cex = 0.3, col = ’black’)

plot (botswana, add= T)

title (main="Predicted standard deviation of malaria risk— 20km grid")

# Cross—validation calculations #
# Predicted vs observed prevelance at validation sites

# Notes: For this section of code the derivation dataset is used, i.e. dfDeriv

The same spatial code as above applies but inseatd of using the full

dataset

# dfDeriv was used yielding 3 spatial chains given by: ml.Deriv, m2.
Deriv, m3.Deriv.

# The code showing the spatial modelling for the derivation data is
ommitted .

# non—spatial prediction accuracy

# derivation and validation subsets of the data

dfDeriv = s.p[derivIindex ,|[which(colnames(s.p[derivindex ,]) %in% c(c("Pos", "
Examined", "Lon", "Lat", "winterTemp","altitude","bio5","bio7" ,"DstTCIW",
"biol8" ,"totRain")))]

dfValid = s.p|[—derivindex ,|[ which(colnames(s.p[derivindex ,]) %in% c(c("Pos", "
Examined", "Lon", "Lat", "winterTemp","altitude" ,"bio5" ,"bio7"  "DstTCIW",

"biol8","totRain")))]
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035|# non—spatial glm fit

936| fit . Deriv <— glm(Pos/Examined ~ winterTemp+altitude+bio5+bio7+DstTCIW+biol8+
totRain, weights = Examined, data = dfDeriv, family = "binomial")

937
38| #A test prediction ability of non—spatial model by applying fitted model (
deriv data) to validation sample (predicted probabilities)

930| predValid <— predict (fit.Deriv, dfValid, type="response", se = T)

940
941|# calculate mean absolute error (MAE) and mean error (ME) between observed and
predicted using non—spatial model at validation sites on probability
scale

942| obs <— dfValid$Pos/dfValid $Examined

943| pred <— exp(predValid$fit)/(1+exp(predValid$fit))

944|ME. nonSpatial <— mean(obs—pred)

945/ MAE. nonSpatial <— mean(abs(obs—pred))

946
947|# spatial prediction accuracy
948
949|# n x 2 matrix of n prediction location coordinates

950| pred . coords <— dfValid@coords

952|# An n x q design matrix or data frame containing the covariates associated
with pred.coords
953 pred. covars <— dfValid@data [3:9]

955|# holds the posterior predictive samples given model output ml.Deriv from
spGLM function
956|ml. pred.valid <— spPredict (ml.Deriv, pred.coords = pred.coords, pred.covars =

as.matrix (cbind (1,pred.covars)),start=burn.in)

958|# mean predicted probability of malaria at each site in validation subset

959| y . pred . valid . prob.mu <— apply (ml.pred.valid$p.y.predictive.samples,1  mean)

961|# calculate ME and MAE between observed and predicted using spatial model at
validation sites

962| obs <— dfValid$Pos/dfValid$Examined

963| ME. spatial <— mean(obs—y.pred. valid.prob.mu)

964|MAE. spatial <— mean(abs(obs—y.pred.valid.prob.mu))

thesisCode.R
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Appendix B: Variable Calculations

Standard Deviation (SD)

The SD of an explanatory variable was calculated as follows:

where y,, = the monthly value and y = mean of all y,,.

Mean Peak Month Around Which Rainfall is Concentrated (q):

Monthly rainfall is expressed as a vector (ry,, 8,,) where r,, is the magnitute of rainfall and

and 6,,, represents its the angle expressed in arc units for months m = {1,...,12}
m2m
0, = —.
12

The twelve monthly vectors are added the total vector (ry, 6;):

12 12
r; = (Z rycos6,,)? + (Z rp,sind,, )?.
m=1 m=1
The mean peak month around which rainfall is concentrated (q) is then given by:

12 .
9, — tan~! (Zm:l r,;,sin@,, )

Zis:l rp,cos6,,
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Rainfall Concentration (rCIndex)

Using Equation 1 the rainfall concentration index (rClndex) is calculated as:

100r;

I = .
rClndex annual total rainfall
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