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ABSTRACT 

 

Benthic filter feeders have a key functional role in the dynamics of coastal food web as 

an intermediate trophic level and bioengineers. A wide variety of factors, operating 

across multiple spatial scales (e.g. hydrographic regime, human activities), can affect the 

composition of the water column and thus the availability of food for benthic 

populations. Food availability in turn affects the growth, reproductive rates and survival 

of benthic organisms, and consequently, can influence the functioning of the entire 

ecosystem. 

This study aims to evaluate how various environmental factors may modify the diet of 

intertidal filter feeders living along the South African coast. Specifically, the effects of 

biogeography, upwelling, urbanization and freshwater input on the dietary regimes of 

five species of filter feeders (two mussel and three barnacle species) were investigated 

using fatty acid (FA) and stable isotope (SI) analyses.  

Strong interspecific differences were found among the five species considered. 

However, all species responded to factors operating at large (100s km) and meso (10s-

100s km) scales (i.e. biogeography and upwelling respectively). The barnacles exhibit 

habitat segregation and showed different FA and SI signatures from each other, while 

the two mussel species, an invasive and native species that co-occur in the same mussel 

beds, had partially overlapping diets. Differences in their diets were found only using FA 

analysis, while their SI signatures differed on only one occasion. This highlights the 

importance of using the appropriate tool, and ideally combined techniques, to 

investigate diets. 

FA and SI signatures of all species considered changed among the three biographical 

provinces (west, south and east coasts of South Africa) exhibiting similar patterns that 

reflect the two oceanographic regimes that characterize the coastline: the eutrophic 

Benguela Current on the west coast and the oligotrophic Agulhas Current on the other 

two coasts. 

Upwelling had a significant effect on FA and SI signatures, with stronger effects on the 

west coast than the south coast. The results indicate that benthic filter feeders at 

upwelling areas consumed a mix of coastal macroalgal detritus and phytoplankton, 

which was probably brought onshore during downwelling events. At smaller spatial 
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scales and using repeated sampling, the influence of upwelling on the west coast was 

found to be pervasive, rather than discrete, so that it may be more appropriate to 

categorize upwelling by referring to upwelling centres and downstream areas. 

SI underlined a significant effect of urbanization on the diet of filter feeders with an 

enrichment in the δ15N being characteristic of anthropogenic effect. 

Although a large number of rivers characterize the South African coast, no distinct effect 

of freshwater input was found for either the SI or FA signatures of the filter feeders. This 

contrasts with earlier work on demersal species and suggests that freshwater input does 

not significantly affect food availability for intertidal filter feeders, and that other factors 

(e.g. hydrogeography) are more important in determining the diet of these populations.  

These results highlight that environmental and anthropogenic factors operating at 

different spatial and temporal scales have a profound effect on benthic ecosystems, and 

that they control the relationship between primary production and primary consumers 

in coastal areas. Above all, this work highlights the importance of understanding the 

spatial and temporal scales at which different factors affect feeding regimes, and their 

critical role in coastal food webs. 
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1. General introduction 

 

1.1. Rocky shore filter feeders 

Primary consumers play a key role in coastal ecosystems because they are responsible 

for the transfer of organic matter from autotrophic and small heterotrophic organisms 

to higher predators in the food chain (Dame 1993a). They are simultaneously affected 

by oceanographic processes that affect supplies of larvae and food (Blanchette 2002, 

Menge et al. 2003) and by benthic processes which include predation, competition and 

physical processes (Connell 1961, Paine 1966, Dayton 1971, Nielsen 2003). Together, 

these processes operate across multiple spatial and temporal scales and can affect the 

physiology of individuals, population sizes and species distributions (Menge et al. 1997, 

Menge 2000, Palumbi 2003, Schiel 2004, Blanchette et al. 2006).  

In the marine environment, filter feeders are a major group of primary consumers 

(Beukema and Cadée 1996, Gili and Coma 1998). They have a fundamental role in the 

re-cycling of nutrients, secondary production and food web dynamics, particularly in 

coastal areas (Doering et al. 1986, Smaal and Prins 1993, Polis et al. 1997). On rocky 

shores, benthic filter feeders also fulfil highly important ecological functions. These 

include ecosystem engineering, acting as key or habitat forming species (Menge et al. 

1994, Jones et al. 1996, Bruno et al. 2003, Gutiérrez et al. 2003, Kelaher and Castilla 

2005, Cole et al. 2011). For example, mussels are ecosystem engineers providing 

habitats for smaller species (Cole and McQuaid 2010), and also contributing to the 

maintenance of high levels of biodiversity (Borthagaray and Carranza 2007). Haven and 

Morales-Alamo (1966) demonstrated the importance of filter feeders in initiating 

sedimentation, by transforming fine suspended matter from the water column into 

faeces or pseudofaeces ready to be used by other species. Von Erkom Schurink and 

Griffiths (1991) showed that the input of mussel gametes can represent a significant 

energy supplement to the benthic and pelagic communities close to mussel beds. Dame 

(1993b) and Prins et al. (1997) underlined the key functional role that bivalves have in 

nutrient recycling in estuarine and coastal areas, while Officer and Smayda (1982) 

emphasized the importance of benthic filter feeder communities in the natural control 

of eutrophication in the south of San Francisco Bay. Given the ecological importance of 
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these organisms, understanding the fundamental factors underpinning their survival 

and success is imperative. Food availability is one of the most important factors for 

benthic filter feeders success, because it can have strong implications for individual 

physiology and the distributions of these populations, with consequences for higher 

consumers, and ultimately for the functioning of the entire ecosystem (Connell 1985, 

Menge 2000, Dodson et al. 2000, Lavorel and Garnier 2002, Le Bauer and Treseder 

2008).   

 

1.2. Factors influencing the diet of primary consumers over different spatial scales 

Primary production is defined as organic carbon or dry matter produced annually per 

unit of surface area within an ecosystem (Fisher 1939, Odum 1956, Prince and Goward 

1995). In the marine environment, primary producers comprise phytoplankton, micro- 

and macroalgae and highly specialised angiosperms such as seagrasses and mangroves 

(Hall et al. 2005, Burkepile and Hay 2006). Primary productivity (the rate of 

photosynthesis) changes significantly with latitude (Rohde 1999) and is one of the major 

factors responsible for the control of species richness, population density and the spatial 

distribution of organisms (Menge et al. 1997, Rosenzweig and Sandlin 1997, Nielsen 

2003). Several other factors acting at different spatial scales also have profound effects 

on the distribution, quality and quantity of primary production in marine systems and 

consequently on the food available for coastal organisms. In marine environments, the 

highest productivity occurs at high latitudes and in coastal areas (Small and Menzies 

1981, Antoine et al. 1996, Field et al. 1998, Huston and Wolverton 2009). Over a 

latitudinal gradient, the nature of the key primary producers changes significantly. For 

instance, in polar regions the main primary producers are phytoplankton, while 

cyanobacteria and microalgae are more dominant in tropical coral reefs, and kelps are 

important in cool temperate areas (Sullivan et al. 1993, Tribollet 2008, Reed et al. 2011). 

The effects of several of these factors operating at different spatial scales are discussed 

in the next few paragraphs.  
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1.2.1. Large scales 

Temperature, solar radiation and nutrient availability are the most frequently identified 

drivers of primary productivity at large spatial scales of 100s km (Field et al. 1998, Rohde 

1999). Air temperature near the planet’ surface affects primary productivity by 

controlling the exchange of CO2 between marine systems and the atmosphere and can 

strongly affect primary production (Churkina and Running 1998, Potter et al. 1999). 

Temperature can also affect metabolic rates and as such acts on the growth, 

reproduction and production of primary producers (Grime 1977, Xiong et al. 2000). 

Hartman (1958) used larval settlement as an index of sexual reproduction in a 

population of the sponge Haliclona loosanoffi, and he found settling occurred when the 

temperature reached 20 to 22 °C; while Vidal (1980) showed that the growth of two 

species of copepods was directly correlated to temperature increases. Another indirect 

effect of seawater temperature is represented by stratification of the water column, 

which creates a physical boundary between the warmer surface waters and the nutrient 

rich deep water (Bunt 1973, Behrenfeld et al. 2006). As a consequence, phytoplankton 

productivity can decrease as photosynthesis in the euphotic zone is restricted by 

nutrient limitation (Cullen et al. 1992, Beardall et al. 2001, Cermeño et al. 2008, Huertas 

et al. 2011). 

 

Another major factor affecting primary productivity which also changes with latitude is 

solar radiation (Bondeau et al. 1999). Light limitation has a major effect on the 

production of primary producers. It can also determine species composition and, 

indirectly, the nature and abundance of primary consumers (Cloern 1987, Nemani et al. 

2003, Kelble et al. 2005, Huston and Wolverton 2009). Factors such as the transparency 

of the water column are critical in determining the amount of solar radiation that 

reaches photosynthetic organisms. For example most benthic primary producers remain 

within the 50 m depth range, where there is sufficient solar radiation to sustain their 

energetic demand (Duarte 1991, Kenworthy and Fonseca 1996). In addition, the 

combined effect of transparency of the water column and latitudinal changes in solar 

radiation also determine the spatial distribution of primary producers over a latitudinal 

gradient (Dennison 1987, Vincent and Roy 1993), and consequently affect the quality 
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and quantity of primary production in these area (Sullivan et al. 1993, Tribollet 2008, 

Reed et al. 2011). 

 

Nutrient availability is the other critical limit to primary productivity (Nixon 1981, 

Downing et al. 1999, Elser et al. 2007, Cermeño et al. 2008, Harpole et al. 2011). In 

marine systems, nitrogen (N) and phosphorus (P) are considered to be the predominant 

limiting macronutrients for primary production (Howarth 1988, Herbert 1999, 

Sundareshwar et al. 2003). The availability of N and P depends on the re-mineralization 

during biological decomposition (Howarth 1988) and the introduction of so-called new 

nitrogen by oceanographic processes, such as upwelling, that bring deep nutrients from 

the bottom to the euphotic zone (Thiel et al. 2007). However other elements, such as 

iron or silicon, can also have a key role in controlling primary production in the ocean 

(Martin et al. 1989, Peng and Broecker 1991, Dugdale et al. 1995). Hence, nutrients are 

derived from a variety of sources and are cycled through the marine environment in 

several ways, including vertical and lateral hydrodynamic processes (Lewis et al. 1986, 

Oschlies and Garçon 1998, Palter et al. 2005). 

 

1.2.2. Mesoscales 

At mesoscales of 10s-100s km, oceanographic processes are the main factors affecting 

primary production in coastal areas, consequently influencing the food available for 

benthic primary consumers. A few of these processes are represented by upwelling, 

coastal currents or freshwater input. In addition, human activities also influence primary 

production at these scales by altering nutrient and light regimes. 

 

Coastal upwelling plays an important role in coastal primary production and supports 

large biomasses of primary and secondary consumers all over the world (Payne and 

Crawford 1989, Bustamante et al. 1995, Basterretxea and Arístegui 2000, Connolly et al. 

2001, Menge 2000). Upwelling events bring cold, nutrient-rich water into the euphotic 

zone, which stimulate photosynthesis of auto- and heterotroph organisms. As a 

consequence, upwelling can modify the composition of the water column and thus the 

quantity and quality of the food available for benthic populations (Bustamante et al. 

1995, Blanchette et al. 2006, Lutjeharms 2006), which subsequently can directly and 
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indirectly affect their metabolism and success (Connell 1985, Duggins et al. 1989, 

Raimondi 1990, Menge 2000). For instance, Figueiras et al. (2002) showed an increase 

in mussel growth in the coastal upwelling area of Rías Baixas of Galicia due to a strong 

increase in phytoplankton availability during the upwelling season. Similarly, 

Nielsen and Navarrete (2004) highlighted an increase in abundance of intertidal 

corticated algae at sites with high intensity upwelling events. Because of the direct 

impact of upwelling on productivity of primary producers, studies on these upwelling 

systems are important to understand trophic dynamics in coastal areas. Upwelling 

systems are regions dominated by diatoms, which are at the base of the food chain 

(Abrantes 1988, Ducklow and Harris 1993, Savidge et al. 1995). Following an upwelling 

event these systems usually become nutrient depleted (mainly silicon) resulting in the 

replacement of diatoms by dinoflagellates (Humborg et al. 2000, Martin-Jézéquel et al. 

2000). For instance Allan et al. (2010), on the south coast of South Africa, showed that 

filter feeders in upwelling areas were characterized by diatom fatty acid trophic markers, 

while further downstream of the upwelling centre, the proportion of diatoms trophic 

makers decreased in favour of dinoflagellates. An aspect to consider in relation to 

upwelling is the hydrography of the upwelling centre. Specifically, depending on the 

hydrography of the site, upwelling can have dissimilar effects on benthic populations at 

the upwelling centre and at downstream sites. Some studies have shown upwelling 

enhances nutrient levels, and thus stimulates phytoplankton and macrophyte growth at 

the upwelling centre (Nielsen and Navarrete 2004, Wieters 2005); while other studies 

highlighted the fact that nutrients and particles upwelled can very rapidly be carried 

offshore during upwelling, resulting in phytoplankton-poor waters close inshore 

(Andrews and Hutchings 1980, Brown and Field 1986, Wieters et al. 2003). 

 

Another important factor that operates at mesoscales is represented by currents. 

Several studies have highlighted the important role that currents can play in larval 

dispersal and recruitment, as well as in the structure and functioning of coastal 

ecosystems (e.g. Nielsen and Navarrete 2004, Blanchette et al. 2006). Others have  

emphasised the link between hydrogeographic regime and the nature of food available 

for benthic organisms (Hill and McQuaid 2006, Allan et al. 2013). In particular, Hill and 

McQuaid (2006) showed that intertidal filter feeders from the three biogeographic 
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regions around South Africa exhibited different stable isotope signatures due to the 

influence of the contrasting currents that dominate the different areas of the coast. 

Similarly Allan et al. (2013) showed a decadal shift in food sources for benthic subtidal 

organisms around the sub-Antarctic Prince Edward Islands from allochthonous to 

autochthonous due to a concomitant climate-driven shift in the position of the sub-

Antarctic Front. 

 

Freshwater input is another factor that can influence the food available for primary 

consumers at mesoscales (Ludwig et al. 2009). Estuaries represent the geographic area 

where terrestrial nutrients reach the open sea. These nutrients can originate from 

terrestrial vegetation, soil, industrial and farming discharges (Rabalais et al. 1996, Smith 

et al. 1999). Nutrients of freshwater origin can thus enhance primary production in 

coastal areas and therefore can affect food availability for marine communities within a 

few kilometres of river mouths (Gillanders and Kingsford 2002, Robins et al. 2005, 

Vorwerk and Froneman 2009). Simultaneously, the load of freshwater input can increase 

turbidity in coastal areas and therefore affect the light available for benthic and pelagic 

primary producers (Lehrter et al. 2009, González-Ortegón and Drake 2012), again with 

consequences for food available for benthic primary consumers (Chanton and Lewis 

2002, Urabe et al. 2002). 

 

Over the last few centuries there has been strong growth in human populations, 

particularly in coastal areas, resulting in increased impact of human activities on natural 

systems (Harvell et al. 1999, Halpern et al. 2008, Claudet and Fraschetti 2010). Major 

threats are represented by habitat destruction or fragmentation, building of artificial 

structures, and degradation of water quality (Mallin et al. 2000, Peters and Meybeck 

2000, Bulleri and Chapman 2010). Decreased water quality in coastal areas is the result 

of both land-based and ocean-based human activities causing eutrophication, increased 

sediment loads, or chemical and oil pollution (Ryther and Dunstan 1971, Jones et al. 

1985, Antizar-Ladislao 2008). For example, a number of studies have recorded negative 

effects on the seabed beneath and around fish cages due to an accumulation of fish 

extraction and pseudofaeces that caused pollution and oxygen depletion (Wu 1995, 

Fernandes et al. 2001). Others showed that mining and resources excretion (i.e. 
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petroleum), in coastal areas and more specifically off river mouths, represent a strong 

disturbance of the seabed through sedimentation and deposition of waste material (e.g. 

in Namibia; Sink et al. 2012). Similarly, Duarte (1995) and Verdelhos et al. (2005) have 

highlighted the remarkable negative effect of eutrophication in altering coastal habitats, 

while others revealed the positive impact of artificial reefs (Charbonnel 2002).  

 

1.2.3. Local and small scales 

At local (from one to a few km) and small (from cm to a few m) spatial scales other 

factors contribute to variability in coastal primary production. Common factors include 

local currents, wave exposure, the presence of kelp beds or tidal cycles (Fréchette and 

Bourget 1985, Eisma and Kalf 1987, Carter 1988, Kingsford et al. 1991, Bustamante et 

al. 1995). For example, local currents or topographically generated fronts may act as a 

barrier to food supply to the shore (Iverson et al. 1979). However, these factors are often 

very chaotic and difficult to predict, being specific of each area investigated and variable 

in time. 

 

Several studies have shown that wave exposure can affect the growth (Blanchette et al. 

2000), distribution (Westerbom and Jattu 2006) and abundance of organisms (Zardi et 

al. 2007a). In addition, mechanical disturbance by wave action can influence the 

distribution of primary production in coastal areas, by influencing the turnover rate of 

particulate matter in the intertidal zone (Eisma and Kalf 1987, Carter 1988, Bustamante 

et al. 1995).  

 

Kelp forests can also be important. These forests support high primary productivity and 

they magnify secondary productivity (Duggins et al. 1989, Kelly 2005, Smale et al. 2013). 

Bustamante et al. (1995) highlighted the importance of kelp detritus on the South 

African west coast, as it represents an important component of the food for benthic 

populations. Similarly Schaal et al. (2009) brought attention to the high contribution of 

kelp-derived organic matter to the diet of filter-feeders in Northern Brittany (France).  
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The tidal cycle can also influence the food available for benthic populations. Fréchette 

and Bourget (1985) showed a depletion of particulate organic matter (POM) 

concentration over an immersed mussel bed passing from high to low tide. 

 

1.3. Diet analyses 

Changes in food quality and quantity of food available are difficult to measure directly 

and studying the diet of organisms represents a more direct way of investigating what 

is actually ingested and assimilated by organisms (Jeffries 1975, DeNiro and Epstein 

1978, Kelly and Scheibling 2012). The commonest approach used in the past to study 

the diet of organisms was the analysis of stomach contents. This technique provides 

information on the size and taxonomy of food ingested at the time of sampling (Hyslop 

1980). However, it does not provide integrated information on the food assimilated, and 

only constitutes a snapshot of the diet. There are also problems of differential rates of 

prey digestion and the accumulation of undigested food items in the stomach. 

Therefore, the analysis of stomach content is not necessarily a good representation of  

what animals are feeding on (Reñones et al. 2002, Ruiz-Cooley et al. 2006). In addition, 

food studies based on stomach-content analyses alone require a large numbers of 

samples and often involve problems with the identification of prey, especially in the case 

of detritivores (Cocheret de la Morinière et al. 2003). For example Harrigan et al. (1989) 

conducted a study on the diet of the fish Lutjanus griseus (the gray snapper) from  

mangrove and seagrass habitats using stomach content and stable isotope analyses. The 

first technique revealed similar diets between habitats, whereas stable isotopes 

indicated different diets between mangrove and seagrass habitats.  

 

In the last few decades, there has been increased use of other techniques that can 

provide information on diets, specifically stable isotope and fatty acid analyses. These 

techniques are important tools for understanding trophic relationships within natural 

ecosystems as they provide time-integrated information on the assimilated diet and 

they can be used to trace the flux of organic matter from producers to consumers 

(Peterson and Fry 1987, Hobson and Welch 1992, Dalsgaard et al. 2003, Kelly and 

Scheibling 2012).  
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Stable isotope (SI) analysis is based on the analysis of the ratios of the stable isotopes of 

carbon (13C/12C) and nitrogen (15N/14N). This method relies on the fact that the carbon 

and nitrogen isotope ratios of an organism reflect the isotopic values of the food 

consumed (DeNiro and Epstein 1978, 1981) after fractionation through feeding, food 

processing and excretory processes (Peterson and Fry 1987, Owens 1988). Hence, δ15N 

indicates the trophic level of an organism (Kling et al. 1992, Hansson et al. 1997, Vander 

Zanden et al. 1997), while δ13C provides information on the food source assimilated 

(Tieszen et al. 1983, Kaehler et al. 2000). In addition, SI can be used to study within- and 

among- population variation in trophic regimes (Vander Zanden et al. 2000, Overman 

and Parrish 2001, Bearhop et al. 2004) as well as individual diet specialization (Matthews 

and Mazumder 2004). For example, Vander Zanden et al. (2000) with the use of δ15N, 

found the same species of lake trout (Salvelinus namaycush) collected in different lakes 

in Ontario and Quebec occupied different trophic levels.  

 

Fatty acid (FA) techniques can also be used to study foraging strategy and food web 

dynamics. Studies have examined the FA composition of a single species, in order to 

acquire information on the spatial and temporal variation in diet among individuals and 

within populations. In addition, lipid analyses can give insights to assess FA synthesis 

pathways, metabolism and reproduction strategies of organisms (Iverson et al. 1997, 

Freites et al. 2002, Budge et al. 2006). FA can also be used as trophic markers (fatty acid 

trophic markers, FATM). Some FA or preferably group of FA are specific to particular 

species or taxa, and can be used to identify the food source (Pascal and Ackman 1975, 

Bergé and Barnathan 2005, Kelly and Scheibling 2012). The FA composition of an 

organism can also provide information on the quality of food available (Jónasdóttir 1994, 

Cotonnec et al. 2001). Thus, FATM can be attributed to one or a few-similar prey types, 

from which it is possible to assess their importance in an organism’s diet (Parrish et al. 

2000, Dalsgaard et al. 2003).  

 

SI and FA are also used in the modelling field (Bearhop et al. 2004, Iverson et al. 2004). 

Both techniques can be related to statistical models that can provide a quantitative 

estimation of each prey in the diet of the predators. A critical difference between the 

two techniques is the different integration time of the elements (i.e. FA vs SI). Previous 
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studies showed that the turnover time for the SI of the adductor muscle of mussels is 

about 9 months (Hill and McQuaid 2009), whereas the turnover for FA is less than a 

month (Pirini et al. 2007), indicating that SI provide a more integrated and conservative 

information than FA. 

 

1.4. Study aims and thesis overview 

In the last few decades, research focused on how meso and large scale processes affect 

benthic–pelagic linkages, with examination of the consequences for diversity, biology 

and food availability in coastal environments, and ultimately for the functioning of entire 

ecosystems (Abbott and Zion 1987, Ellis et al. 2000, Thrush et al. 2000, Russell et al. 

2005). In particular, food availability can affect benthic populations, with strong 

consequences on food web dynamics and ecosystem structure. However, very little 

information is available on the effect of factors operating at different spatial and 

temporal scales on food availability and thus on the diet of intertidal consumers. The 

present work aims to increase the current understanding of the effect of factors 

operating from large to local spatial scales and at temporal scale on the dietary regime 

of benthic filter feeders. By using two complementary techniques, SI and FA analyses, 

this work examines the potential effect of upwelling, biogeography, urbanization and 

freshwater input on the dietary regimes of five intertidal filter feeders that co-exist on 

rocky shores: two mussels and three barnacles’ species. This aim is addressed in five 

working chapters. A preliminary study investigated the diet of two species of mussels, 

an invasive and a native species that co-occur on the South African coast. This was 

conducted in order to assess if the two species display differences in FA and SI (Chapter 

2). The four following chapters assessed the effects of urbanization (Chapter 3), 

freshwater input (Chapter 4), biogeography (Chapter 5) and upwelling (Chapter 5 and 6) 

on the FA and SI signatures of benthic filter feeders. Each of these studies was conducted 

at several sites along the South African coast and tested the effect of the specific factor 

on several species of filter feeders, in order to assess within-species variability. Chapter 

7 provides a synthesis of the main findings provided in the previous chapters.  
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1.5. Study area 

The South African coast can be divided into three biogeographic provinces that 

correspond to the three coasts: west, south and east, with transitional areas between 

the main provinces (Emanuel et al. 1992, McQuaid and Payne 1998, Harrison 2002, 

Bolton et al. 2004). The cool-temperate west coast extends from the Namibian border 

to the Cape of Good Hope, the warm-temperate south coast ranges from Cape Agulhas 

to Port St. Jones, while the subtropical east coast spreads from Port St. Jones to the 

Mozambique border (Harrison 2002, Teske et al. 2006).  

 

 

Fig 1.1 Map of South Africa illustrating the three biogeographic provinces. 

 

Each of the three biogeographic provinces are characterized by different hydrographic 

conditions. The west coast is dominated by the Benguela Current, eutrophic cold water 

(11-16 °C; Fig 1.2, Fig 1.3) with Southern Ocean origins which flows from south to north, 

and that upwells at several locations on the west coast (Andrews and Hutchings 1980, 

Demarcq 2009). The Benguela is a highly productive system that supports a large 



 Chapter 1- General Introduction 

13 
 

diversity of primary producers and consumers (Shannon et al. 1983, Shannon and 

Nelson 1996, Fennel 1999). The south coast and east coasts are dominated by the 

oligotrophic warm water Agulhas Current (22-26 °C, Fig 1.2, Fig 1.3; Probyn et al. 1994, 

Lutjeharms 2006, Backeberg et al. 2008). This water originates from the Mozambique 

Channel and flows from the north-east part of the coast towards the south-west. The 

limit between these two provinces located in the region of East London, is not as distinct 

as the one differentiating the west coast from the south coast. It seems that the main 

difference between the east and south provinces is related to dissimilarity in water 

temperature with the south coast being cooler than the east coast.  This is probably due 

to the presence of a wide continental shelf in the region of East London that pushes the 

Agulhas Current further offshore, and thus the coastal water on the south coast 

becomes slightly cooler (Lutjeharms 2006).  

 

 

Fig 1.2 Marine remote sensing unit (MRSU) satellite image of sea surface temperature (SST) on the South 
African coast on the 22th of December 2013.  

 

The three coasts experience events of upwelling that differ profoundly in their intensity 

and frequency. The Benguela Current on the west coast enhances wind-driven upwelling 

events that occur over the summer season along the Cape Peninsula, and become more 

frequent moving northward to around the region of Hondeklipbaai (Fig 1.1.; Andrews 
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and Hutchings 1980). This system, is one of the major upwelling systems of the world's 

oceans (Carr and Kearns 2003, Chavez and Messié 2009). The south coast supports a 

semi-permanent cell of continuous upwelling in the region of Port Alfred (Fig 1.1). 

Although this coast experiences more frequent events of upwelling over the year than 

the west coast, the upwelling events are much less intense (Schumann et al. 1982, 

Lutjeharms et al. 2000). The east coast has an upwelling cell off Cape St. Lucia (Fig 1.1), 

however upwelling events there, are very rare and weak (Lutjeharms 2006). 

 

  

Fig 1.3 MRSU satellite image of chlorophyll a (mg m-3) on the South African coast on the 22th of December 
2013. 
 

 

The South African coast supports only a few cities with high levels of urbanization. Cape 

Town is located close to the conjunction of the west and south coasts and is the coastal 

city with the highest population (~ 4 million), followed by Durban on the east coast (~ 3 

million; “Census 2011- Cape Town” 2011, “Census 2011- Durban” 2011). The west coast 

has only a few very small towns and besides Cape Town and Durban, most of the larger 

towns or cities with relatively high levels of urbanization are present on the south coast. 

In particular Port Elizabeth, East London and Mossel Bay, although small by the 

standards of other countries, have the highest numbers of inhabitants (range between 

1 million and 120000 ; “Census 2011- East London” 2011, “Census 2011- Mossel Bay” 

2011, “Census 2011- Port Elizabeth” 2011). In addition, the wastewater of these cities 

runs straight into the ocean due to poor infrastructure for the recycling of wastewater 
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and the existence of high density of informal settlements. None of these three cities 

extends far inland, but all occupy long stretches of the coast (between 13 and 30 km). 

 

South Africa is a semi-arid country and the highest numbers of rivers with temporarily 

or permanently open estuaries are found on the south and especially on the east coasts, 

therefore the majority of rivers flow into the Indian Ocean (Whitfield and Bate 2007). 

The east  coast has a subtropical climate and rainfall varies seasonally, with 80% of the 

annual total precipitation (900-1000 mm) occurring in the summer months (Cooper 

1993). Most of the estuaries of this area are temporarily closed during the winter dry 

season due to low river discharge (Whitfield and Bate 2007). 

 

The present study was conducted on the intertidal rocky shore of South Africa. The 

intertidal zone represents the transition between the terrestrial and the marine 

environments (Levin et al. 2001). The principal characteristic of this zone is that it is 

affected by tidal cycles, so that this area is alternately immersed in water and exposed 

to air (Little et al. 1996). Tidal ranges vary enormously around the world, but along the 

coast of South Africa, the range is approximately 2 m. The intertidal shore can be 

classified as exposed or sheltered based on wave exposure. Sheltered shore are usually 

within bays or enclosed areas, while exposed areas include, for example, capes or 

headlands. Water turnover on exposed shores is about seven times greater than on 

sheltered shores  and the degree of wave exposure can differ at small scales depending 

on several aspects for example geomorphology or hydrographic of the specific area 

(Bustamante and Branch 1996b). In the present study, the sites chosen for the 

comparison all had similar wave exposure and within the South African context would 

be regarded as moderately exposed.  

 

1.6. Study species 

The species studied were five species of filter feeders, chosen because they are widely 

distributed around the South African coast. These were two mussels, Perna perna 

(Linnaeus) and Mytilus galloprovincialis (Lamarck), and three barnacles, Chthamalus 

dentatus (Krauss), Octomeris angulosa (Sowerby) and Tetraclita serrata (Darwin).  
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P. perna is native to South Africa and characteristic of the east and south coasts and its 

size range varies between 80 and 125 mm (Branch et al. 2007). On the east coast it is 

the dominant mussel species, while on the south coast it occupies the low and mid 

mussel zones (Zardi et al. 2006, 2008).  

 

M. galloprovincialis, the Mediterranean blue mussel, was accidentally introduced to 

South Africa around 1970 (Grant and Cherry 1985) and is the most successful mussel 

species on intertidal shores on the South African coast (Robinson et al. 2005, Griffiths et 

al. 2009). This species co-exists with P. perna on the south coast (Bownes and McQuaid 

2006), where it is mostly present on the mid and upper mussel zone (Fig 1.4). Adult size 

range varies between 60 and 140 mm (Branch et al. 2007). 

 

 

Fig 1.4 The two mussels species used in this study: Perna perna and Mytilus galloprovincialis. 
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C. dentatus is a small species of barnacle (size range 5 - 10 mm), with a wide geographic 

distribution which covers the entire South African coastline. It is common in the upper 

intertidal zone (Fig 1.5; Dye 1998, Branch et al. 2007).  

 

O. angulosa is a barnacle that occurs in the mid and low intertidal zones, characteristic 

of wave-exposed areas on all three coasts of South Africa. Its size range is between 10 

and 25 mm and individuals can form extensive aggregations (Fig 1.5; Boland 1997).  

 

T. serrata is a volcano shaped barnacle common along the whole coast of South Africa. 

It occurs on the mid intertidal shore and preferentially in more sheltered areas than O. 

angulosa. Adult size is about 20 mm (Fig 1.5; Boland 1997a, Branch et al. 2007).  
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Fig 1.5 The three barnacle species of this study: Octomeris angulosa, Chthamalus dentatus and Tetraclita 

serrata. 
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2. Diet partitioning between an invasive and an indigenous species of 

mussel 

 

2.1. Introduction 

The intentional or accidental introduction of exotic species represents an 

important stressor for coastal marine ecosystems (Grosholz 2002, Bax et al. 2003, 

Carlton 2009, Vilà et al. 2009).  Species invasions can have profound ecological impacts, 

including changes in patterns of distribution, abundance and diversity of native species 

(Benedetti-Cecchi et al. 2006, Claudet and Fraschetti 2010). Often non- endemic species 

become predominant in term of abundance and lead to ecosystem homogenization by 

reducing food-web complexity (Stachowicz et al. 1999). Hence non-endemic species can 

drastically alter ecosystem functioning. Although many studies have tried to determine 

the factors responsible to the susceptibility of a community to invasion, habitats appear 

to vary in their resistance to invasions. In the marine environment, it seems that 

temperature, predation, competition for space or exposure to wave action are potential 

factors responsible for invasions success (deRivera et al. 2005, Riel et al. 2006, 

Stachowicz and Byrnes 2006, Sousa et al. 2008). For example Rius and McQuaid (2009) 

in a study conducted on two species of mussel (a native and an invasive species) showed 

the invasive species was less resistant to wave action compared to the native. Schneider 

and Helmuth (2007) indicated in another study that both the local and geographic 

distributions of a native and an invasive intertidal mussel species were mainly driven by 

physiological stress associated with aerial exposure. An aspect that may have been 

underestimated, however, is if the food environment can affect invasive species success. 

Coastal ecosystems are profoundly influenced by the physical processes that affect the 

water column and drive food and nutrients delivery to benthic populations (Rohde 1999, 

Huston and Wolverton 2009, Smith et al. 2009). The availability and quality of food affect 

the metabolism, biomass and survival of heterotrophic organisms, with consequences 

on ecosystem functioning (Raimondi 1990). Changes in food sources or food availability 

can compromise the survival of indigenous benthic organisms and thus facilitate 

invasive species success. This could have important consequences for the rest of the 

ecosystem by modifying the structure and dynamics of benthic rocky shore communities 

(Connolly et al. 2001). Hence, evaluating the relationship between species invasion and 
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food availability could contribute to understand how and why colonization by invasive 

species succeeds.  

Mytilus galloprovincialis is one of the most widely spread marine invasive 

species, occurring on all continents except Antarctica (Hockey and van Erkom Schurink 

1992, Branch and Steffani 2004, Robinson et al. 2005) and it was  accidently introduced 

on the South African coast in the late 1970s (Grant and Cherry 1985). In South Africa, M. 

galloprovincialis has largely replaced the native mussel species Aulacomya ater on the 

west coast, and coexists with the native Perna perna on the south coast (Hockey and 

van Erkom Schurink 1992, Robinson et al. 2005, Griffiths et al. 2009). Where the two 

species co-occur on the south coast, M. galloprovincialis usually occupies the mid and 

upper mussel zone, which is less exposed to wave action and sand stress, while P. perna 

is limited to the mid and low mussel zones, where desiccation stress is lower (Robinson 

et al. 2005, Bownes and McQuaid 2006, Zardi et al. 2008). Several studies have identified 

possible explanations for the success of M. galloprovincialis in South Africa (Zardi et al. 

2006, 2008, Rius and McQuaid 2009), however no information on the effects of food 

availability exist. The two species are filter feeders with a similar size range and as such, 

it is possible to hypothesize that they have a similar broad diet. However, it is well 

accepted that filter feeders can be selective (Drenner et al. 1984, Baker and Levinton 

2003, Heidman et al. 2012) and can differ in their filtering efficiency (Tenore and 

Dunstan 1973), however no studies have investigated diet differences between P. perna 

and M. galloprovincialis. 

  The present study aims to investigate if the diets of the invasive Mytilus 

galloprovincialis and the indigenous Perna perna differ where they co-occur in mixed-

species mussel beds. In particular, the study aimed to assess if the two species rely on 

different food by using fatty acid (FA) and stable isotope (SI) approaches. 
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2.2. Materials and Methods 

2.2.1. Study area and samples collection 

 

 
Fig 2.1 Geographic distribution of Mytilus galloprovincialis and Perna perna along the Southern African 
coastline and the four sampling sites: Port Elizabeth (site 1), Brenton on Sea (site 2), Mossel Bay (site 3) 
and Jongensfontein (site 4). 

 

The study was conducted along the South African south coast where the two 

species of mussels co-occur (Fig 2.1, 34.4-33.3 S° 21.3-26.5 E). P. perna is present on the 

south and east coasts of South Africa, along the Namibian coast and in southern 

Mozambique, whereas the introduced M. galloprovincialis occurs on the South African 

south and west coasts, extending northwards into Namibia (Fig 2.1). P. perna was never 

present on the South African west coast, even before the introduction of M. 

galloprovincialis. 

In order to compare the diets of the two mussel species, samples were collected 

at four sites where they co-occur in June 2012: Port Elizabeth (site 1), Brenton on Sea 

(site 2), Mossel Bay (site 3) and Jongensfontein (site 4). Port Elizabeth and Mossel Bay 
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are sites characterized by relatively high levels of urbanization and industrial activity 

along the coast, with human populations of 1.3 million and 117 840 for Port Elizabeth 

and Mossel Bay, respectively (“Census 2011- Mossel Bay” 2011, “Census 2011- Port 

Elizabeth” 2011). Brenton on Sea experiences sporadic and relatively weak seasonal 

upwelling events (Schumann et al. 1982) and Jongensfontein is not exposed to either 

anthropogenic, upwelling or riverine influences.  At each site, samples of the two species 

were taken at two locations, separated by 1 - 3 km, from mixed species mussel beds at 

the same height on the shore. Three replicates of each species were collected for the FA 

analyses and five replicates for the SI analyses. The adductor muscle of each replicate 

was chosen for the comparison due to its low turnover rate (Gorokhova and Hansson 

1999). Live animals were transported on ice to the laboratory (2 - 3 h) in order to 

decrease their metabolic rates and thus potential degradation of their tissues. Each 

replicate was dissected; the tissue was washed with distilled water in order to remove 

sand and shell fragments, and placed in a 2 ml cryotube. The samples were then flash 

frozen in liquid nitrogen to stop degradation of lipids and then transferred to a -80 °C 

freezer until processing. 

 

2.2.2. Diet analysis 

2.2.2.1. Isotopic analysis 

In the laboratory, samples for SI analyses were dried at 60 °C for 48 h. The 

samples were ground into a fine powder with ball mills and 1 mg subsamples were 

placed into tin foil capsules. Samples were analysed for stable isotope ratios of carbon 

(13C/ 12C) and nitrogen (15N/ 14N) using a continuous flow Isotopic Ratio Mass 

Spectrometer (Europa Scientific 20 - 20 IRMS linked to ANCA SL Prep Unit) at the 

IsoEnvironmental Laboratory,  Rhodes University, Grahamstown, South Africa. Results 

are expressed in standard unit notation as:  

 

δX = ([R sample/R standard] - 1) x 1000 
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where X is 13C or 15N, R is the ratio of 13C/ 12C or 15N/ 14N. Beet sugar, ammonium sulphate 

and casein were used as standard, calibrated against multiple International Atomic 

Energy reference standards. Measurement precision for both carbon and nitrogen was 

± 0.05 ‰. 

 

2.2.2.2. Fatty acid analysis 

Mussel samples were lyophilized (VirTis BenchTop K) for 24 h. Subsequently they 

were stored in a -80 °C freezer until processed. Total lipids were extracted and trans-

esterified using a modified Indarti one step procedure (Indarti et al. 2005) within six 

months of collection. Samples were homogenized into a four mL fresh solution of a 

mixture of methanol, concentrated sulphuric acid, and chloroform containing 0.01 % of 

an anti-oxidant, BHT (butylated hydroxytoluene) (1.7:0.3:2.0 v/v/v), and closed under 

nitrogen in lipid clean test tubes. The extraction and transesterification reactions 

occurred at 100 °C for 30 min. The FA methyl esters (FAME) hence formed were then 

stored at -80 °C until Gas Chromatography (GC) analyses. FAME composition of each 

sample was determined by GC (Agilent Technologies 7890A, at the National Research 

Foundation (NRF) Fatty Acid Facility at Rhodes University, Grahamstown, South Africa) 

equipped with a ZB-Waxplus capillary column (ZB-Waxplus 320 column), with helium as 

the carrier gas at a flow rate of 1.664 ml min−1. The injector was at a temperature of 250 

°C. The flame ionization detector was set at 260 °C, and the oven was initially set at 70 

°C. After one min, the oven temperature was increased by 40 °C min-1 until 170 °C and 

then raised to 250 °C at a rate of 2.5 °C min−1 and held for 4.5 min. Peaks were integrated 

using GC ChemStation software (Agilent Technologies, version B.04.02), identified by 

comparison with retention times of external standards (37 component fatty acid methyl 

ester mix Supelco, marine PUFA no. 1 Supelco, menhaden oil PUFA no. 3, bacterial acid 

methylesters mix Supelco), as well as by mass spectrometry analyses (Agilent 

Technologies 7000 GC/MS Triple Quad; Agilent Mass Hunter (MS), version B.05.00) using 

the NIST library. Each FA was measured as a proportion of the total fatty acid (TFA) 

composition (weight % of TFA) and peak areas were corrected according to the FID 

response to FA chain length (Ackman 2002). FA are reported using a shorthand notation 

of A:Bwx, where A indicates the number of carbon atoms, B is the number of double 
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bonds and x indicates the position of the first double bond relative to the terminal 

methyl group (Budge et al. 2006).  

Amongst the common FA trophic markers (FATM), it is possible to find bacterial 

FA (BAME) which are the sum of iso- and anteiso-branched chain FA and unbranched 

15:0 and 17:0 FA (Wakeham and Beier 1991, Volkman et al. 1998, Budge et al. 2001). 

The FA 16:1w7 and 20:5w3 (EPA) are characteristic of diatoms, while the FA 22:6w3 

(DHA) and 18:4w3 are prevalent in dinoflagellates (Parrish et al. 2000, Dalsgaard et al. 

2003). Macroalgae are usually rich in w-6 FA and more specifically kelps are 

characteristically 20:4w6 enriched (Hanson et al. 2010) while microalgae are rich in w-3 

FA (Dalsgaard et al. 2003). Non-methylene-interrupted FA (NMI) are synthesised de novo 

by marine filter feeders from other FA such as 16:1w7 and 18:1w9, which are very 

abundant in their food (Pirini et al. 2007, Barnathan 2009). Essential FA for filter feeders 

are 20:4w6, 20:5w3 and 22:6w3 (Alkanani et al. 2007).Vascular plants are characterized 

by long chain  (LCFA, > 24 atoms of carbon) of saturated FA (SFA) and 18:2w6 and 18:3w3 

(Parrish et al. 2000, Dalsgaard et al. 2003, Kelly and Scheibling 2012). In order to assess 

if the specimens of this study had long chain FA, a few tests were run for 60 min in the 

GC machine (compared to the standard time of 40 min), however no LCFA were 

recorded in this work.  

 

2.2.3. Data analysis 

2.2.3.1. Stable isotopes 

To examine possible differences in δ13C and δ15N signatures of the native and 

invasive mussels, a mixed model design consisting of three factors was performed: 

species (two levels, fixed), site (four levels, random and crossed with species) and 

location (two levels, random, nested in site and crossed with species). ANOVA, followed 

by Tukey HSD post-hoc tests, was performed in order to assess significant effects. 

Levene’s test was used to test for homogeneity of variances. All analyses were 

performed using STATISTICA v12 (StatSoft Inc. 2012).  

 



 Chapter 2 – interspecies feeding pattern 

26 
 

2.2.3.2. Fatty acids 

The FA composition of the two mussel species was compared with the same 

design as for the SI analyses. A Multivariate Permutation Analysis (PERMANOVA; 

Anderson 2001) on Bray-Curtis dissimilarities was used in order to assess differences 

among factors. Each term in the analysis was tested using > 9999 permutations as the 

relevant permutable units (Anderson and Braak 2003). Principal component analysis 

(PCA), a non-constrained explorative multivariate analysis, was used to explore 

differences in FA signatures among species. PCA describes relationships among variables 

by reducing a large number of variables to a few components. These components are 

calculated to maximise the projected variance of the samples by combining correlated 

variables into new components (Clarke and Gorley 2006). Proportions of FA were 

transformed with a square root function prior to statistical analyses. The combined 

results of the PCA and SIMPER (similarity percentage, PRIMER) were used to assess 

which FA were influencing the principal components of the PCA and the differences 

among groups of samples. Only FA forming more than 1 % TFA were considered for the 

analyses. The analyses were conducted using the PRIMER v6 and PERMANOVA+ add-on 

package of PRIMER v6 (Clarke and Gorley 2006, Anderson et al. 2008). 
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2.3. Results 

2.3.1. Stable isotopes 

ANOVA highlighted significant effects of the factors species, site and their 

interaction for both isotopic elements, with no significant effects of location for either 

species (Table 2.1). However, Tukey HSD post-hoc test showed the only difference 

between the two species was at site 2 (Fig 2.2; Tukey HSD, p < 0.001), where P. perna 

was significantly enriched in δ15N and depleted in δ13C compared to M. galloprovincialis: 

δ15N = 9.04 ‰ and 8.53 ‰, δ13C -16.28 ‰ and -15.74 ‰ for P. perna and M. 

galloprovincialis respectively. 

 
Fig 2.2 Stable isotope nitrogen (a) and carbon (b) signatures (mean ± SD; n = 5) of M. galloprovincialis and 
P. perna at four sites along the South African south coast where the two species co-occurred. Site 1: Port 
Elizabeth, 2: Brenton on Sea, 3: Mossel Bay and 4: Jongensfontein. Values indicate means and error bars 
represent standard deviation. 

 

Considering the two species together, strong dissimilarities in δ15N and δ13C 

signatures were found among sites (Table 2.1). At sites 1 and 3, both species had higher 

δ15N than M. galloprovincialis from site 2 and 4 (Fig 2.2, b; Tukey HSD, p < 0.01). In 

addition δ13C of M. galloprovincialis at site 2 was not significantly different from δ13C of 

either species at sites 3 and 4 (Fig 2.2, a; Tukey HSD, p > 0.05), whereas it was higher 

than for both species at site 1 (Fig 2.2, a; Tukey HSD, p < 0.01). P. perna at site 2 did not 

have a different δ15N or δ13C signature from specimens of either species at sites 1, 3 and 

4 (Fig 2.2; Tukey HSD, p > 0.05 for both elements).  
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Table 2.1 Results of ANOVA performed on stable isotope values for two species of mussels 
(M. galloprovincialis and P. perna) co-occurring in the same sites. Sp = Species, Si = Site, Loc 
= Location; df = degrees of freedom, MS = mean square; * p, 0.05; ** p, 0.01; *** p, 0.001. 

  δ 13 C    δ15N    

 df     MS F p  df   MS F p 

Species (Sp) 1 1.46 11.47 ** 1 0.96 10.33 ** 
Site (Si) 3 4.20 33.07 *** 3 1.84 19.73 *** 

Loc (Si) 4 0.06 0.61   4 0.05 0.54   

Sp x Si 3 1.08 8.49 *** 3 0.26 2.80 * 
Sp x Loc (Si) 4 0.05 0.38   4 0.17 1.83   

Error 64 0.13     64 0.09     
  

 

2.3.2. Fatty acid composition 

 

Fig 2.3  Saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids 
(PUFA) (mean ± SD) of P. perna (a) and M. galloprovincialis (b) collected at four sites on the South African 
south coast. TFA: total fatty acids. 
 

The two mussel species had similar FA composition, with thirty-two FA contributing > 

one % of TFA in each species (Table 2.2). In both species, NMI FA formed 10 to 20 % of 

TFA (Table 2.2). Polyunsaturated FA (PUFA) contributed the highest percentage of TFA 

at all sites and in both species (approximately 50 % or more), with the exception of site 

2 for P. perna and site 3 for M. galloprovincialis, where they comprised 24.02 % and 

29.64 % of TFA, respectively (Fig 2.3; Table 2.2). In both species, the contribution of 

MUFA was between 10 and 16 % of TFA (Fig 2.3; Table 2.2) 
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Table 2.2 Fatty acid composition of P. perna and M. galloprovincialis (% of TFA) at four sites on the South 
African south coast. The values are percentages expressed as mean ± standard deviation. Only FA 
contributing >1 % of TFA are displayed below.  

  Perna perna Mytilus galloprovincialis 

TFA 

Site 1 

Port Elizabeth 

Site 2 

Brenton on Sea 

Site 3 

Mossel Bay 

Site 4 

Jongensfontein 

Site 1 

Port Elizabeth 

Site 2 

Brenton on Sea 

Site 3 

Mossel Bay 

Site 4 

Jongensfontein 

                                                  

14:0 2.20 ± 0.31 4.08 ± 0.71 1.71 ± 0.45 2.00 ± 0.32 0.98 ± 0.21 1.21 ± 0.39 1.19 ± 0.44 0.88 ± 0.11 

16:0 16.42 ± 0.56 33.65 ± 2.38 16.87 ± 1.00 20.73 ± 2.91 17.96 ± 3.01 22.70 ± 1.98 30.88 ± 2.54 20.75 ± 1.27 

16:1w7 2.73 ± 0.30 3.06 ± 0.52 2.65 ± 0.50 2.56 ± 0.34 1.93 ± 0.54 1.91 ± 1.17 0.84 ± 0.37 1.53 ± 0.55 

C18:0 7.36 ± 0.45 12.87 ± 1.96 6.75 ± 0.93 8.65 ± 1.33 7.25 ± 1.42 8.67 ± 1.84 15.02 ± 1.25 8.68 ± 0.99 

18:1w9 0.89 ± 0.15 1.98 ± 0.49 1.28 ± 0.30 1.38 ± 0.15 1.12 ± 0.32 1.21 ± 0.46 1.93 ± 0.27 1.04 ± 0.33 

18:1w7 1.73 ± 0.88 2.06 ± 0.24 1.80 ± 0.40 2.04 ± 0.35 2.14 ± 0.14 1.71 ± 0.50 1.46 ± 0.46 1.64 ± 0.23 

18:2w6 2.53 ± 0.28 1.17 ± 0.40 2.99 ± 0.66 2.41 ± 0.44 1.49 ± 0.40 1.39 ± 0.81 0.47 ± 0.38 1.17 ± 0.17 

18:3w3 1.14 ± 0.13 0.40 ± 0.47 1.14 ± 0.24 0.77 ± 0.28 0.59 ± 0.28 0.71 ± 0.25 0.71 ± 0.21 0.46 ± 0.17 

18:4w3 0.93 ± 0.17 0.34 ± 0.58 1.08 ± 0.24 0.58 ± 0.21 0.74 ± 0.30 0.58 ± 0.18 0.50 ± 0.38 0.48 ± 0.17 

20:1w11 1.78 ± 0.28 1.40 ± 0.24 1.93 ± 0.32 1.58 ± 0.29 2.43 ± 0.30 2.42 ± 0.71 1.38 ± 0.20 2.73 ± 0.44 

20:1w9 2.75 ± 0.18 7.02 ± 1.02 2.95 ± 0.24 4.27 ± 1.01 4.57 ± 0.70 5.53 ± 1.27 8.34 ± 0.50 5.03 ± 1.00 

20:1w7 0.35 ± 0.53 1.45 ± 0.23 0.66 ± 0.22 0.76 ± 0.29 0.87 ± 0.18 0.52 ± 0.14 0.69 ± 0.41 0.76 ± 0.33 

20:2 NMI1 6.00 ± 0.87 2.38 ± 0.62 5.67 ± 0.83 4.14 ± 0.64 5.68 ± 0.58 5.50 ± 0.99 2.33 ± 0.30 5.82 ± 1.10 

20:2 NMI2 0.79 ± 0.54 1.17 ± 0.46 0.44 ± 0.20 0.63 ± 0.23 1.08 ± 0.41 1.37 ± 0.68 0.82 ± 0.40 1.43 ± 0.37 

20:4w6 5.36 ± 0.57 1.97 ± 0.51 7.01 ± 1.54 4.96 ± 0.72 6.58 ± 0.36 4.90 ± 1.38 2.46 ± 0.48 5.14 ± 0.66 

20:5w3 7.60 ± 0.71 1.53 ± 0.62 6.47 ± 0.50 5.39 ± 1.61 9.40 ± 2.12 7.39 ± 1.57 1.38 ± 0.34 7.36 ± 1.15 

22:2w6 2.20 ± 0.43 1.18 ± 0.40 2.66 ± 0.62 2.00 ± 0.44 0.90 ± 0.48 0.77 ± 0.31 2.39 ± 1.26 1.16 ± 0.29 

22:2 NMI1 5.98 ± 0.67 2.59 ± 0.91 6.09 ± 0.82 5.32 ± 0.78 6.35 ± 0.55 4.96 ± 0.82 3.61 ± 1.63 5.17 ± 0.81 

22:2 NMI2 1.05 ± 0.31 2.00 ± 1.35 1.22 ± 0.72 1.47 ± 0.50 0.91 ± 0.75 0.37 ± 0.50 6.01 ± 1.54 1.68 ± 1.79 

22:3 NMI 1.10 ± 0.38 0.44 ± 0.71 1.87 ± 0.09 1.44 ± 0.33 1.42 ± 0.17 1.71 ± 0.17 0.63 ± 0.12 1.78 ± 0.40 

22:4w6 1.68 ± 0.16 0.31 ± 0.36 1.98 ± 0.78 1.42 ± 0.48 0.80 ± 0.08 0.96 ± 0.99 0.84 ± 0.42 0.59 ± 0.07 

22:5w6 1.33 ± 0.24 0.54 ± 0.28 1.22 ± 0.09 1.25 ± 0.16 1.28 ± 0.14 0.85 ± 0.36 0.74 ± 0.29 0.56 ± 0.11 

22:5w3 2.67 ± 0.42 0.90 ± 0.49 2.08 ± 0.28 2.04 ± 0.32 1.42 ± 0.25 1.54 ± 0.36 0.97 ± 0.37 1.29 ± 0.26 

22:6w3 17.31 ± 1.64 6.97 ± 2.08 16.36 ± 1.49 16.35 ± 3.50 16.49 ± 2.70 15.54 ± 2.36 4.94 ± 0.89 16.93 ± 3.70 

BAME 5.77 ± 0.64 8.65 ± 0.95 4.95 ± 0.41 5.72 ± 0.74 5.19 ± 1.40 5.46 ± 0.80 8.62 ± 0.26 5.46 ± 0.51 

SFA 31.75 ± 1.05 59.25 ± 4.23 30.27 ± 0.94 37.11 ± 4.99 31.38 ± 3.81 38.04 ± 3.91 55.71 ± 3.14 35.76 ± 2.11 
MUFA 10.22 ± 1.31 16.98 ± 1.53 11.27 ± 0.64 12.59 ± 1.74 13.07 ± 1.22 13.30 ± 0.68 14.65 ± 1.16 12.73 ± 2.44 

PUFA 58.02 ± 1.94 24.02 ± 5.22 58.45 ± 1.11 50.30 ± 5.98 55.56 ± 4.49 48.66 ± 3.92 29.64 ± 2.99 51.50 ± 3.95 

 

Despite these similarities in broad FA composition, PERMANOVA highlighted 

strong dissimilarities between species (p < 0.001) and among sites within species (p < 

0.01), whereas no location effect was recorded for either species (p > 0.05). P. perna and 

M. galloprovincialis were dissimilar from each other at all sites (PERMANOVA post-hoc 

pair wise test, p < 0.01). PERMANOVA post-hoc pair wise tests showed that the FA 

composition of P. perna at site 2 was significantly different from the other three sites (p 

< 0.001), which did not differ among each other (p > 0.05).  The same was observed for 

M. galloprovincialis but for site 3, which  had different FA signatures from conspecifics 
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collected at sites 1, 2 and 4 (p < 0.001), which again, did not differ among each other. 

These results were confirmed by the principal component analysis (PCA; Fig 2.4).  

 

 

Fig 2.4 PCA of fatty acid composition of the mussels P. perna and M. galloprovincialis collected at four 
sites on the South African south coast. PC1 explained 61.5 % of the total variance and PC2 a further 10.7%. 

 

PC1 which explained 61.5 % of the total variance, highlighted remarkable dissimilarities 

between P. perna from site 2 and M. galloprovincialis from site 3 on one hand and the 

remaining samples on the other hand. The samples on the negative part of PC1 had a 

higher proportion of 16:1w7 and PUFA such as 18:4w3, 20:4w6, 20:5w3, 22: 2NMI and 

22:6w3, while the samples on the positive part of PC1 were enriched in SFA and MUFA 

(14:0, 16:0, 18:0, 18:1w9, 20:1w7, 20:1w9, BAME). This agrees with the general 

observations described earlier, with P. perna from site 2 and M. galloprovincialis from 

site 3 having more SFA than PUFA. PC2 identified dissimilarities between species, 

separating P. perna from site 2 and M. galloprovincialis from sites 1, 2 and 4 from 

specimens at the other sites (Fig 2.4). Specimens from the positive part of PC2 were 

characterized by 14:0, 16:0, 16:1w7, 20-MUFA, 20:5w3, 20:2NMI1, 20:2NMI2 and 

22:6w3; while the samples in the negative part were enriched in 18:3w3, 18:4w3, 

20:PUFA-w6, 22:2NMI1, 22:2NMI2, 22:5w3 and 22: PUFA-w6. However, PC2 explained 

only 10.7 % of the total variance, therefore caution should be taken in its interpretation. 

To identify differences between the two species a SIMPER analysis was performed on 

specimens of P. perna at sites 1, 3 and 4, and M. galloprovincialis at sites 1, 2 and 4. The 
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dissimilarities were mainly driven by w-6 PUFA that were in higher proportions in P. 

perna, while M. galloprovincialis was enriched in 16:0, 18:0, 20-MUFA and 20:5w3. 
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2.4. Discussion 

The present study showed dissimilarities between P. perna and M. 

galloprovincialis at sites where the two species co-occurred, with individuals of the two 

species separated by only a few centimeters. However, these differences were found 

only in the FA composition, while their SI signatures differed only at site 2. With the 

exception of two cases, the FA signatures of both species had high values of PUFA. Some 

PUFA are particularly important for organisms for their essential role in membrane 

structure and function (Kanazawa et al. 1979, Volkman et al. 1989, Alkanani et al. 2007). 

Having a diet enriched in PUFA is an indication of better food quality compared for 

example to detritus which is poor in PUFA (Dalsgaard et al. 2003, Iverson 2009). The 

findings of this study indicate the two species were feeding on good food quality. 

However, some dissimilarities were found: P. perna was characterized by w-6 PUFA, 

which are more abundant in macroalgae, while no specific FATM for M. galloprovincialis 

were identified. These dissimilarities can be reconciled through two possible 

explanations: differences in their metabolic pathways or in their diets, most probably 

related to selectivity. Indeed the two mussels may have different FA pathways, possibly 

with different metabolic rates, which can lead to different FA profiles despite feeding on 

the same food sources. Filter feeders can acclimate to changes in their feeding 

environment by modifying physiological processes (Iglesias et al. 1992, 1996, Urrutia et 

al. 1997). For instance filter feeders can maximize energy uptake in the presence of high 

turbidity and/or low quality of food by increasing filtration rates and pseudofaeces 

production (Iglesias et al. 1992). In addition, mussels filter material using their gills 

(Foster-Smith 1975) and two pairs of labial pulps (Ward et al. 1998) and they can 

regulate filter-rejecting mechanisms depending on particle concentrations (Widdows et 

al. 1979, Leverone 1995). Zardi et al. (2008) showed M. galloprovincialis have longer 

labial palps that P. perna, suggesting a greater, or at least different ability to sort 

particles. Conceivably this can drive differences in their diet and thus mirrored in their 

FA composition. It was suggested that selectivity could be important for invasive species 

success if they are able to feed on better quality food than native species (Meng and 

Orsi 1991, Baker and Levinton 2003). Baker and Levinton (2003), in a study conducted 

on three native (Margaritifera margaritifera, Amblema plicata and Pyganodon 

cataracta) and an invasive (Dreissena polymorpha) species of freshwater mussels in 
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North America, showed the invasive species exhibited a selective diet focusing on highly 

nutritious species of phytoplankton. This suggests that the ability to select better food 

quality or quantity combined with other physical stressors (i.e. thermal stress or 

competition for space) can determine the success of the invasive over the native species. 

In the present study, this hypothesis was only partially supported as the two mussel 

species were different from each other, but it was not possible to identify specific diet 

trophic markers. However, this study was conducted at only four sites and on one 

occasion. Further investigations comparing the diet of P. perna and M. galloprovincialis 

in different feeding environments are required to clarify this pattern. A similar FA 

pattern was found for both species and at all sites except for P. perna from site 2 and M. 

galloprovincialis from site 3. A low proportion of PUFA indicates that specimens are 

exposed to a low quality of food, starving or in an unhealthy state for other reasons (i.e. 

disease, pollution; Müller-Navarra and Lampert 1996, Wacker and von Elert 2001, 

Dalsgaard et al. 2003). Thus, this indicates that those specimens were in an unfavorable 

environment in contrast to specimens of the other species from the same mussel bed. 

It is difficult to explain these differences with the available data. The fact that the species 

were collected in the same mussel bed, only a few centimeters apart, suggests that the 

food available was the same for the two mussels and that other factors influenced them. 

However, it is not possible to provide a plausible explanation for dissimilarities between 

M. galloprovincialis at site 3 and P. perna at site 2 with the conspecifics elsewhere.  

M. galloprovincialis is a successful invasive species along the South African coast. 

From this study, it emerges that the two species were slightly different from each other 

in term of FA signatures, however both seemed to exhibit a diet characterized by good 

food quality. This suggests that good food quality was not a limiting resource. However, 

the dissimilarities in FA of P. perna at site 3 and of M. galloprovincialis at site 2 highlight 

the need for further studies to assess if the differences observed were unusual or if it is 

a common pattern due to selective feeding behaviour or to species-specific 

metabolisms.
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3. Does proximity to urban centres affect the dietary regime of filter 

feeders? 

 

3.1. Introduction 

Human activities can directly and indirectly affect natural systems at local and 

global scales (Chapman et al. 1995, Hooper et al. 2005, Claudet and Fraschetti 2010, 

Bode et al. 2014). Major threats that can affect coastal marine environments include 

habitat destruction and degradation of water quality (Lotze et al. 2006, Airoldi and Beck 

2007, Boero and Bonsdorff 2007, Bulleri and Chapman 2010). A decrease in water 

quality in coastal areas can result from both land-based and ocean-based human 

activities, most commonly through increased sediment loads, water turbidity and 

chemical or oil pollution (Vitousek et al. 1997, Lillebø et al. 2005, Halpern et al. 2008, 

Mangialajo et al. 2008). 

Nutrients derived from urban and agricultural wastewater are identified as one 

of the causes of change in the structure and composition of marine food web dynamics 

because of their impact on nutrient cycles in rivers, estuaries and coastal waters 

(Richardson and Jørgensen 1996, Paerl 1997, McClelland and Valiela 1998, Castro et al. 

2007). Nutrient availability is one of the main drivers that enhances primary production 

(Howarth 1988). However, an excess of nutrients can lead to eutrophication which, in 

coastal areas, can potentially create serious and perhaps irreversible environmental 

changes (Nixon 1995, Connell et al. 2008, Gorman et al. 2009). One effect of 

eutrophication is the bacterial remineralisation of large amounts of organic matter 

which depletes the water of its oxygen (Rosenberg and Loo 1988, D’Avanzo and Kremer 

1994, Karlson et al. 2002). The resultant phenomenon of anoxia can cause mass 

mortality of fishes and benthic invertebrates in coastal areas (Borum and Sand-Jensen 

1996, Bode et al. 2014). Other studies have highlighted the indirect effect of 

eutrophication on the productivity of benthic primary producers due to the attenuation 

of light penetration in the water column caused by phytoplankton blooms (Cambridge 

et al. 1986). Some of these blooms are due to toxic algae (Harmful Algal Blooms- HABs) 

that can consequently cause mass mortality of other organisms present in the water 

(Landsberg 2002). Other works showed how changes in nutrient availability for primary 

producers can shift community composition, by increasing the size and density of some 
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benthic primary consumers to the detriment of other species (Blumenshine et al. 1997, 

Persson and Svensson 2006). Most of these effects are usually observed in semi-

enclosed areas such as bays, where the recirculation of the water is limited compared 

to the open coast (Le Pape et al. 1996, Wang et al. 1999). Nevertheless these changes 

often remain unnoticed because other factors can mitigate the effect of human activities 

(Lillebø et al. 2005). Some studies have hypothesised that bivalve populations can 

mitigate the effects of eutrophication by facilitating the removal of particles and so 

increasing the clarity of coastal waters (Soto and Mena 1999, Rise 2001). For example 

Soto and Mena (1999) showed that it was possible to decrease the impact of salmon 

farming in a southern Chilean lake by using a freshwater mussel species (Diplodon 

chilensis) to filter and clear particulates and dissolved nutrients. Lillebø et al. (2005) in a 

study conducted in a Portuguese estuary showed how hydrodynamic changes can 

reverse eutrophication processes, represented in this case by a decrease of freshwater 

input to the sea after minimizing a sluice opening. Bode et al. (2014) suggested that the 

effects of anthropogenic inputs are not always visible because some coastal ecosystems 

are already highly productive (e.g. upwelling systems). Consequently, because of 

processes that regulate coastal dynamics, anthropogenic effects are not always 

obviously detectable. It is thus important to investigate these processes using 

appropriate techniques that integrate signals of changes over a period of time, and are 

therefore able to detect underlying anthropogenic effects. In particular, assessing the 

relevance of anthropogenic effects on the food sources available for organisms in 

coastal areas is fundamental to evaluating possible consequences of increasing 

anthropogenic pressure on coastal ecosystem food webs and functioning (Grimm et al. 

2000). 

McClelland et al. (1997) drew attention to the use of δ15N to track the 

assimilation of anthropogenic nitrogen into food webs, hence providing a method to 

detect eutrophication. Differences in δ15N are usually used to identify the trophic level 

to which an organism belongs, but they can also reflect variations in the source of 

nitrogen consumed by the primary producers (McClelland and Valiela 1998, Aguiar et al. 

2003, Žvab Rožič et al. 2014). Nitrogen from human wastewater is generally enriched in 

heavy isotopes because of the high degree of fractionation associated with nitrification 

occurring in these waters after discharge (Mariotti et al. 1981, Heikoop et al. 2000, 
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Carmichael and Valiela 2005, Cole et al. 2005). Consequently, a higher proportion of 

heavy isotopes can provide an indicator of anthropogenic input into a particular system.  

Fatty acids (FA) can also be used to study trophic ecology and food web dynamics 

by examining specific FA which are transferred almost unaltered from producers to 

consumers (fatty acid trophic markers, FATM; Dalsgaard et al. 2003). They can also 

provide information about food quality, for example, 22:6w3 and 20:5w3 both indicate 

good food quality when present in high concentrations (Dalsgaard et al. 2003). Although 

this technique has not frequently been applied to the evaluation of anthropogenic 

effects, several studies have highlighted its importance in identifying anthropogenic 

food sources. For instance, Sakdullah and Tsuchiya (2009) showed that the dietary 

regime of estuarine fishes close to wastewater discharges had high proportions of 

18:1w9 and 18:2w6 FA, which are abundant in urban waste discharges to the sea 

(Quéméneur and Marty 1994, Rieley et al. 1997). 

Most studies of anthropogenic effects have been conducted in areas with high 

human population densities (e.g. Europe, North America), and very little or no 

information is present for less developed areas. Along the South African coast there are 

several cities with relatively high levels of urbanization that exist on an otherwise 

sparsely populated coastline. Several studies investigating anthropogenic effects on 

bivalves have focussed on the effect of heavy metals or eutrophication (El-Shenawy 

2004, Verdelhos et al. 2005), however, to the present knowledge no studies have yet 

investigated the effects of anthropogenic input on primary consumers diet in intertidal 

habitats. This is important as anthropogenic input can affect primary productivity and 

thus food availability and quality for higher trophic level organisms. In view of the 

fundamental role that benthic filter feeders have in coastal areas, the present study aims 

to investigate how the presence of large cities with a relatively high level of urbanization 

(population higher > 100 000 inhabitants) along the South African south coast affects 

the dietary regime of several species of intertidal filter feeders. Specifically the dietary 

regime of three barnacle and one mussel species were assessed and compared using FA 

and stable isotope (SI) techniques.  
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3.2. Materials and Methods 

3.2.1. Study area and sample collection 

 

 
Fig 3.1 Map of the South African south coast showing sampling sites potentially influenced by urbanisation 
(black dots) and sites far from urbanized area (grey dots). 

 

The study was conducted along the South African south coast (Fig 3.1, latitude 

34.3-33.2 S° 27.6-21.2 E). The south coast has a temperate climate with mainly cool-

water species which extend from the Cape of Good Hope to Port St Johns (Stephenson 

and Stephenson 1972, Harrison 2002). This coast is characterized by the Agulhas 

Current, a fast-flowing current carrying oligotrophic water southwards from the 

Mozambique channel (Probyn et al. 1994, Lutjeharms et al. 2000, Lutjeharms 2006). 

In order to test the potential effect of urbanization on the diet of intertidal filter 

feeders, tissue samples were collected at three sites in cities: East London (site 1), Port 

Elizabeth (site 3) and Mossel Bay (site 5); and three control sites far (> 30 km) from large 

urbanized areas: Kidd’s beach (site 2), St. Francis Bay (site 4) and Jongensfontein (site 

6). The three cities are characterized by a relatively high level of urbanization and 

industrial activities. In particular the populations are estimated at 267 000, 1.3 million 

and 117 840 for East London, Port Elizabeth and Mossel Bay, respectively (“Census 2011- 

East London” 2011, “Census 2011- Mossel Bay” 2011, “Census 2011- Port Elizabeth” 
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2011). East London is located at the conjunction of two rivers, the Buffalo River and the 

Nahoon River, which both flow through the city, while Port Elizabeth and Mossel Bay 

are not located on any river mouth. In addition Port Elizabeth and Mossel Bay are in bays 

(Algoa Bay and Mossel Bay respectively), while East London is located on the open coast. 

The filter feeders investigated during this study were the indigenous mussel Perna 

perna, and three species of barnacle: Chthamalus dentatus, Tetraclita serrata and 

Octomeris angulosa. 

Sampling was carried out in June 2012. At each site, samples of each species were 

taken at two locations, separated by 1 - 3 km. Specimens were collected in their 

corresponding microhabitats where they naturally occur, on the same rocky shore. 

Hence, P. perna was collected from the low intertidal zone, C. dentatus from the upper 

intertidal zone, T. serrata from sheltered areas and O. angulosa from exposed areas. 

Three replicates of each species were used for the FA analyses and five for the SI 

analyses. Because of the size of the barnacle C. dentatus, several animals were pooled 

together for each replicate (between 8 and 10 animals), while replicates of T. serrata 

and O. angulosa comprised the whole body of a single individual. For P. perna, the 

adductor muscle of one individual was analysed due to its low turnover rates 

(Gorokhova and Hansson 1999). Samples for FA and SI analyses were processed as 

described in Chapter 2 (Chapter 2; paragraph 2.2.1 and 2.2.2). 

 

3.2.2. Data analysis 

3.2.2.1. Stable isotopes 

To examine the differences in tissue of δ13C and δ15N signatures between 

urbanized and non- urbanized areas, a mixed model design was used, consisting of the 

factors: city (two levels, fixed), site (three levels, random and nested in city), location 

(two levels, random and nested in site) and species (four levels, fixed and crossed with 

all the other factors). ANOVA followed by Tukey HSD post hoc tests was performed in 

order to assess differences among the different factors. Levene’s test was used to test 

for homogeneity of the variances. The ANOVA and the post hoc tests were performed 

using STATISTICA v12 (StatSoft Inc. 2012).  
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3.2.2.2. Fatty acids 

The FA composition of species from urbanized and non-urbanized areas was 

compared using a PERMANOVA based on a Bray-Curtis dissimilarities matrix with the 

same design as for the SI data analyses. Principal component analysis (PCA) and SIMPER 

were also performed as described in Chapter 2 (paragraph 2.2.3.2.). 
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3.3. Results 

3.3.1. Differences among species 

SI and FA analyses showed differences among species across all sites (ANOVA, p 

< 0.001 and PERMANOVA, p < 0.001). A strong dissimilarity was found between mussels 

and the three barnacle species in terms of their SI signatures (Fig 3.2 a). P. perna showed 

higher δ13C (-14.4 to -17.5 ‰) and lower δ15N (6 to 9 ‰) compared to the three 

barnacles species (-15.8 to -20.6 ‰ for δ13C and 9.2 to 13.36 ‰ for δ 15 N). Amongst 

barnacles, no significant differences were found between C. dentatus and T. serrata at 

all sites considered, whereas O. angulosa differed from the two other species for both 

isotopes at sites at sites 3, 4, 5 and 6 (Tukey HSD, p < 0.001). 

 

 

Fig 3.2 Stable isotope signatures (a) and principal component analysis (PCA) performed on the fatty acid 
composition (b) of one species of mussel P. perna and three species of barnacle O. angulosa, C. dentatus 

and T. serrata from six sites on the South African south coast. PC1 explained 60 % of the total variance 
and PC2 21 %. 

 

A similar pattern was observed using the FA composition of the four filter feeder species 

(Fig 3.2 b). PCA separated mussels and barnacles along axis 1, which explained 60 % of 

the variance. SIMPER showed the differences between these two groups were mainly 

due to the non-methylene-interrupted fatty acids (NMI) and the following FA: 18:2w6, 

20:1w9, 20:4w6, 22:4w6, 22:5w6 and 22:5w3, which were more abundant in mussels 

than barnacles, while levels of 20:5w3 (EPA), monounsaturated FA (MUFA) and 
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saturated (SFA) FA were higher in barnacles than mussels. These FA contributed 55 % to 

the dissimilarities (for full list of fatty acids see Appendix a). PERMANOVA highlighted 

differences between C. dentatus and the other two barnacle species (PERMANOVA post 

hoc pair-wise test, p < 0.001). Further analyses using SIMPER showed that C. dentatus 

had higher concentrations of SFA (16:0, 18:0, 20:0), bacterial FA (BAME) and 20:1w11 

FA, compared to the other two species; whereas O. angulosa and T. serrata were 

characterized by higher values of 14:0, 16:1w7, 18:4w3, 20:4w3, 20:5w3 and 22:6w3. 

Again, these FA contributed 55 % to the dissimilarities. In view of these dissimilarities 

among species, each filter feeder was considered separately for subsequent analyses. 

 

3.3.2. Effects of urbanisation 

3.3.2.1. Stable isotope composition 

δ13C of all species taken individually showed no significant effect of the factors 

city or location (ANOVA, p > 0.05; Fig 3.3). However, the ANOVA revealed that δ13C 

values differed among sites (ANOVA, p < 0.01). Although overall each species differed 

significantly in their δ13C signatures, they showed similar pattern of rank order among 

sites. δ13C increased from site 1 to 2, decreased from sites 2 to 3 and remained constant 

afterwards, between site 3 and 6 (Tukey HSD, p < 0.01). 

Table 3.1 ANOVA results preformed on the δ15N of filter feeders at six sites along the South African south 
coast. n = 5 per location for each species. Ci = City, Si = Site, Loc = Location, df = degrees of freedom, MS 
= mean square; * p, 0.05; ** p, 0.01; *** p, 0.001. 

δ 15 N   P. perna   C. dentatus   T. serrata   O. angulosa   

  df MS F   df MS F   df MS F   df MS F   

                       

Ci 1 11.96 88.53 *** 1 0.47 8.66 ** 1 0.98 6.34 * 1 0.40 0.33 * 

Si (Ci) 4 8.14 60.26 *** 4 27.40 503.51 *** 4 32.66 210.83 *** 4 16.01 13.11 *** 

Loc (Si (Ci)) 6 0.17 1.25   6 0.37 6.84  6 0.27 1.73   6 1.71 1.40   

Error 48 0.14     48 0.05     48 0.15     48 1.22     

 
 

δ15N was significantly higher at city sites compared to their corresponding control sites 

for P. perna and C. dentatus (Fig 3.4; Table 3.1) but not for T. serrata and O. angulosa at 

site 2 (Tukey HSD, p < 0.05; Fig 3. c and d). Indeed T. serrata at site 1 and 2 were not 

significantly different (Tukey HSD, p > 0.05; Fig 3. c), while O. angulosa at site 1 was δ15N 

depleted compared to site 2 (Tukey HSD, p < 0.01; Fig 3. d). 
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Fig  3.3 Stable isotope carbon signatures (mean + SD; n = 10) for filter feeders at city (black) and control 
sites (grey) along the South African south coast. a) P. perna b) C. dentatus c) T. serrata d) O. angulosa. 

 

A clear geographic trend was visible with increasing δ15N from east to west considering 

sites under the same conditions (city sites or control sites, Tukey HSD, p < 0.01; Fig 3.4). 

In addition, site 1 and 2 showed significantly lower δ15N signatures compared to the 

other four sites (Fig 3.). No location effects were recorded for any species (Table 3.1). 
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Fig 3.4 Stable isotope signatures (mean + SD; n = 10) for filter feeders at city (black) and control sites (grey) 
along the South African south coast. a) P. perna b) C. dentatus c) T. serrata d) O. angulosa. Stars indicate 
significant differences between city and non-city sites (ANOVA, p < 0.05).  

 

 

3.3.2.2. Fatty acid composition 

FA signatures of all barnacle species were not affected by proximity to a city 

(PERMANOVA, p > 0.05), while mussel FA signatures showed differences between city 

and control sites (PERMANOVA, p < 0.05, Fig 3.5). For mussels, the differences were 

mainly driven by 18:2w6, 18:3w3, 18:4w3, 20:2 NMI1, 20:4w6, 20:5w3 and 22:6w3, 

which were more abundant at city sites, while control sites were enriched in 16:0, 18:0, 

18-MUFA, 20:1w7, 20:1w9 and 22:2 NMI2 (SIMPER). PERMANOVA showed no 

significant effects of the factors site or location on the FA signatures of any species (p > 

0.05).  
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Fig 3.5 Principal component analysis (PCA) of transformed proportional FA profiles of P. perna 
collected in city (white) and control sites (black) along the south coast of South Africa. Each sample 
represents the average values of three replicates at a single location. PC1 explained 60 % of the 
total variance and PC2 16 %.   
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3.4. Discussion 

SI and FA analyses showed strong differences between mussels and barnacles 

and among barnacle species. Explanations for these differences are likely to be related 

to the ecology, the metabolism or the physical size of the species considered. Within 

species, changes in body size can influence consumer diets (Zhukova 2000, Tallis 2009). 

Mussels in the present study were larger in size than the barnacles (mean 60 mm and 

20 mm respectively) and C. dentatus was much smaller (max 10 mm) than the other two 

species of barnacles (max 25 mm for both), suggesting they might feed on different size 

particles. In addition, mussels are active feeders while barnacles are passive feeders 

(Nixon et al. 1971, Rubenstein and Koehl 1977). These two characteristics (size and 

filtration mechanisms) can influence the type and the size of the particles ingested. 

Hence mussels can filter particles of up to 2.4 mm while barnacles filter only up to 1 mm, 

with a critical minimum size of 1 - 3 μm for both (Jørgensen 1955, Southward 1987, 

Trager et al. 1990, Wang and Fisher 1996, Alfaro 2006). Small- scale variability in species 

habitats can also influence the type of food available to each species and thus modify 

their FA and SI profiles (Budge et al. 2002, Khotimchenko et al. 2005, Guest et al. 2010, 

McQuaid and Mostert 2010). For example Barnes & Powell (1953) found barnacles from 

the lower intertidal grew faster than those located higher on the shore; while 

Strathmann et al. (1981) showed cyprid larvae of Balanus cariosus prefer to settle on 

the lower intertidal shore where food availability is higher. Along the South African 

coast, T. serrata is usually associated with relatively sheltered shores and replaced by O. 

angulosa in very wave exposed areas (Boland 1997a, 1997b), while C. dentatus is 

generally found in the upper intertidal zone and P. perna in the lower intertidal (Dye 

1998). Differences in food particle availably at different heights on the shore could 

therefore also have been a factor driving FA and SI dissimilarities among species in this 

comparison. Another point to consider is that only the adductor muscle of P. perna was 

taken for the present investigation, while for the barnacles, the entire body was used. 

Animal tissues exhibit different levels of metabolic activity that depend on the function 

of the organ itself. For example, gonads have a faster turnover rate compared to muscle 

(Ezgeta-Balić et al. 2014). Therefore, the different metabolic rates of the tissues chosen 

in this comparison (adductor vs whole body) perhaps could have driven FA and SI 



 Chapter 3- urbanization 

47 
 

dissimilarities between barnacles and mussels, but would not explain the differences 

among the barnacle species. 

δ15N values of filter feeders near urbanized areas were significantly higher than 

at control sites, and in addition, there was a clear geographic trend in nitrogen SI 

signatures from east to west. Previous studies highlighted the fact that urbanised areas 

can have an impact on the nitrogen signature of food sources, and subsequently on 

higher consumers within the food web by increasing the amount of the heavy isotope 

through fractionation associated with nitrification in these environments (McClelland 

and Valiela 1998, Castro et al. 2007, Pastor et al. 2014). Therefore, it is hypothesised 

that the significant increase of δ15N observed in the present study indicates a potential 

influence of anthropogenically derived nitrogen linked to wastewater input from 

domestic and industrial sewage. lsen et al. (2010) in a seagrass habitat of Puerto Rico, 

also found elevated δ15N signatures in primary consumers that were linked to the 

incorporation of nitrogen from wastewater sources. Abreu et al. (2006) highlighted an 

increase of 3.5‰ δ15N in primary producers and consumers from a polluted lagoon 

system compared to organisms from a non-polluted system. However in the present 

study, while this effect was observed for all the species in Mossel Bay and Port Elizabeth 

(sites 3 and 5), it was only observed for P. perna and C. dentatus in site 1 (East London). 

The topography of the area could have contributed to the dissimilarities among cities. 

Indeed East London is located on the open coast whereas Port Elizabeth and Mossel Bay 

are situated in bays. Archambault et al. (1999) found that chl a concentration and mussel 

growth were significantly greater inside a bay than outside and suggested that this was 

due to retention of nutrients within the bay. The same hypothesis can also explain the 

present results, with retention of anthropogenically-associated nutrients in the bays of 

Mossel Bay and Port Elizabeth compared to East London. Therefore, the different 

environmental and/or hydrodynamic conditions among these cities could be 

responsible for the differences in δ15N.  

δ13C did not differ between city and control sites. It has been demonstrated that 

δ13C differentiates among food sources (Peterson and Fry 1987) and this is reflected in  

consumer signatures (Peterson 1999). The lack of differences in this study suggests that 

filter feeders in city and control sites consume the same food sources, with the values 
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found here corresponding to a typical signature of macroalgal detritus (Hill and McQuaid 

2006).  

Strong differences in SI signatures were found among sites. In particular, δ15N 

increased from east to west following a geographic gradient. This pattern most probably 

reflects the isotopic gradient from oligotrophic to eutrophic conditions described by Hill 

and McQuaid (2006). They suggested that the distinct geographic pattern in δ15N 

signatures in mussels species along the south coast of South African is driven by the 

reliance on recycled nitrogen in oligotrophic waters (Miyake and Wada 1967). Sites 1 

and 2 differed in their carbon signatures from each other and from all other sites. 

Specifically, δ13C at site 1 was low compared to the other sites. These differences could 

be driven by the presence of a cell of continuous upwelling at Port Alfred (Schumann et 

al. 1982, Bustamante et al. 1995) as the signature of upwelling generally propagates 

eastwards, towards site 1 and 2. Upwelling events bring cold, nutrient-rich water into 

the nearshore environment, and thus enhance intertidal primary production (Nelson 

and Hutchings 1983, Basterretxea and Arístegui 2000, Blanchette et al. 2006). In 

addition, it was shown that δ13C values of benthic consumers at upwelling sites are 

depleted compared to specimens from non-upwelling sites (see Chapter 5), while a 

study conducted on filter feeders in this area also demonstrated that specimens from 

an upwelling area had low δ13C values compared to specimens from sites downstream 

of the upwelling cell (Allan et al. 2010). The eastward influence of the Port Alfred 

upwelling cell could explain the particularly depleted values for site 1, but not the fact 

that δ13C values were most enriched at site 2, which lies between site 1 and Port Alfred. 

FA results partially confirmed the SI results. Barnacles were not affected by being 

in urbanised centres, while mussels were. Mussel FA signatures from city sites were 

enriched in polyunsaturated FA (PUFA), while the control sites had high percentages of 

SFA and MUFA. Enrichment in PUFA can indicate that specimens are exposed to high 

food quality (Dalsgaard et al. 2003) or to a high quantity of food (i.e. not under 

starvation; Wacker and von Elert 2001). As detailled previously, eutrophication due to 

an increase of anthropogenic-associated nutrients, can enhance primary production and 

an increase in food availability for primary consumers (Odum et al. 1962, Howarth et al. 

1996, Downing 1997, Bouillon et al. 2002). It is hypothesised that the higher 

concentrations of PUFA found in mussels close to cities are linked to such a process. 
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However, this pattern was not observed for barnacles. Possible differences in 

metabolism as described previously could have contributed to the dissimilar pattern 

between mussels and barnacles. It is also possible that the enhancement of primary 

production affected mostly phytoplankton cells that are too large for the barnacles to 

feed on. 

This study highlighted the profound lack of information on the effects of human 

activities on the food available for intertidal filter feeders in coastal areas. This is the 

first work to investigate potential anthropogenic effects on FA signatures of filter 

feeders. Further studies investigating anthropogenic effects in more controlled 

environments (e.g. mesocosm experiments) or comparing food sources of benthic 

populations, nutrient availability and the presence of pollution are required in order to 

clarify and identify the effects of human activities on food available for benthic 

communities and the resultant effects on coastal food webs. The present study 

indicated that anthropogenic effects can be detected through the diets of benthic 

consumers, and showed the importance of differentiating among species of filter 

feeders in ecological studies. Modification of the diet of these species can affect their 

survival and thus the species composition of the communities inhabiting coastal 

ecosystems. Although relatively few species are responsible for maintaining ecosystem 

functioning in natural systems (Mills et al. 1993, Bond 1994, Jones et al. 1996). Key 

species, such as mussels, can have far reaching impacts if disturbed (Paine 1969, 

Stachowicz et al. 1999). This is especially true because mussels are ecosystem engineers 

providing habitats for other organisms (Kelaher and Castilla 2005, Menge et al. 2008, 

Cole and McQuaid 2010). Consequently, changes in the quality and quantity of food 

available will not only affect intertidal filter feeders but could also affect the flora and 

fauna associated with them (Huston 1979, Hansen et al. 1995, Tilman 1999). 
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4. The effect of freshwater input on the stable isotope and fatty acid 

signatures of marine filter feeders along the South African east coast 

 

4.1. Introduction 

Freshwater input may influences marine pelagic and benthic communities 

through the export of nutrients, sediments and detritus (Gillanders and Kingsford 2002, 

Robins et al. 2005). The increase of nutrients in coastal environments due to riverine 

input enhances phytoplankton and subsequently zooplankton production (D’Elia et al. 

1986, Grimes and Kingsford 1996). Plankton being at the base of the food chain, can 

affect the survival of larval, juvenile and adult stages of higher predators that depend 

on this food source. Freshwater input may also promotes macroalgal and seagrass 

production in coastal areas (Bunt 1973, Eadie et al. 1994, Downing 1997, Cermeño et al. 

2008). Fluvial sediment inputs may have a fundamental role in securing near shore 

habitats that are continuously subjected to erosion by oceanic currents and wave action, 

which is especially important because these habitats are essential refuges for many 

organisms such as fish and invertebrates (Halim et al. 1995, Dalrymple and Choi 2007). 

Detritus also may has a key role in aquatic ecosystems not only as a food source for 

detritivorous organisms, but because it can be remineralized by bacteria into nutrients 

available for primary producers (Nixon 1981, Whitfield 1998). Another very important 

aspect that needs to be considered when investigating the effect of freshwater input on 

marine systems is obviously the amount of freshwater flowing out of the estuary and 

the topography of the coast (Meybeck et al. 1996). Despite these well-established 

functions, published studies give different interpretations of the overall importance of 

rivers as potential nutrient sources for marine populations. De lecea et al. (2013), in a 

study conducted in the Natal Bight in South Africa demonstrated that the stable isotope 

signatures of demersal benthic populations were strongly dependent on fluvial input. 

Similarly, Darnaude et al. (2004) showed that the diet of deposit-feeding polychaetes in 

the Gulf of Lions originated from riverine organic matter. Drinkwater and Frank (1994) 

carried out a  worldwide examination of riverine effects on the marine environment and 

highlighted a strong correlation between reductions in freshwater flow and a decline in 

coastal fisheries. Other studies have indicated that fluvial input becomes unimportant 
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in the presence of large-scale oceanographic processes such upwelling, or powerful 

currents, which overshadow or disperse the influence of  freshwater input (Meyer et al. 

2002, Hill et al. 2008).  

Stable isotope (SI) signatures of δ13C are a very powerful tool to discriminate 

between freshwater and marine sources of food (Kaehler et al. 2000, Darnaude et al. 

2004, Bănaru et al. 2007) as the δ13C of suspended organic matter (SPM) from rivers is 

depleted compared to marine SPM (Walsh et al. 1981, Coleman and Fry 1991).  This is  

due to the presence of vegetation with depleted δ13C in rivers, and carbon enrichment 

in marine systems (Fry and Sherr 1989, Vorwerk and Froneman 2009). For example Tallis 

(2009), in a study conducted at five river sites in the Olympic Peninsula (Washington, 

USA), used δ13C values to show that benthic filter feeders consumed very small amounts 

of riverine SPM and that their primary resource was based on macroalgae and seagrass 

detritus.  

Several studies have highlighted the benefits of using fatty acid techniques (FA) 

to differentiate sources of organic matter between marine and terrestrial (reviewed by 

Dalsgaard et al. 2003, Kelly and Scheibling 2012) and thus acquire information on the 

spatial and temporal variation in diet among individuals and within populations (Budge 

et al. 2006, Budge and Springer 2007, van den Meersche et al. 2009). Despite the 

relevance of FA analyses to investigate food sources, few studies have applied FA 

techniques to examine the effect of riverine organic input on marine organisms, 

however any effect of freshwater-associated organic input were identified on marine 

species located a few kilometres alongshore (either up- or downstream) of a river mouth 

(e.g. Richoux et al. 2014a).  

South Africa has about 250 permanently open and temporarily closed estuaries 

along the south and east coasts (Whitfield and Bate 2007). Understanding the effect of 

freshwater input on the dietary regime of intertidal populations in the vicinity of 

estuaries along the South African coast is thus extremely important (Begg 1978). 

Especially in the context of climate change which predicts a reduction or an increase of 

freshwater input into the marine environment depending on the area in question 

(Harley et al. 2006), understanding or having a baseline to be able to predict the possible 

impact on costal environments is important. A few studies have examined the effects of 

freshwater dissolved and particulate material on the dietary regime of marine intertidal 
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populations using either SI or FA analyses (Tocher 2003, Tallis 2009, Vorwerk and 

Froneman 2009), but none have  integrated results from both techniques. Using both 

FA and SI techniques, this study aims to increase our understanding of the effects of 

freshwater input on the dietary regimes of four rocky shore intertidal filter feeders over 

large spatial scales (100s km) on the South African east coast. 
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4.2. Materials and Methods 

 
Fig 4.1 Map of the sampling sites on the east coast of South Africa with the bathymetry and the estuaries. 
Sites located at major estuaries (rivers highlighted in blue) were: Mzimvubu (site 1), Mtamvuna (site 3) 
and Thukela (site 6); sites used as controls were Mbotyi (site 2), Pennington (site 4) and Ballito (site 5). 

 

4.2.1. Study area and sample collection 

The study was conducted along the South African east coast, as most of the 

estuaries in South Africa are present along this coast (Fig 4.1, latitude 33.5-29.16 S° 

27.13-31.26 E). This coast is characterized by a narrow continental shelf that widens in 

the northern part to form the Natal Bight between Durban and St. Lucia (Fig 4.1). The 

shelf break lies around the 200 m isobath and the Agulhas Current runs along the shelf 

break, enclosing well mixed water within the Natal Bight (Probyn et al. 1994, Lutjeharms 

et al. 2000). The Bight receives Indian tropical and subtropical water from the 

Mozambique Channel and from an upwelling cell which occurs off Cape St. Lucia, in the 

North of the Bight (Lutjeharms et al. 2000, Meyer et al. 2002). 

In order to test the effect of freshwater input on the dietary composition of 

intertidal filter feeders, samples were collected at the mouths of three rivers that are 

large in the local context: Mzimvubu (site 1), Mtamvuna (site 3) and Thukela (site 6) and 

compared to samples from three control sites far (> 50 km) from large or permanently 

open river mouths: Mbotyi (site 2), Pennington (site 4) and Ballito (site 5; Fig 4.1). In 

addition, at each location measurements of instantaneous salinity were recorded. The 

Mzimvubu River (site 1) is one of the largest rivers of the region, and flows into the sea 
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at Port St. Johns. It is 250 km long with a catchment area of about 25 000 km2 and mean 

annual runoff of over 2.8 x 109 m3/ year ( the fourth highest in South Africa, Table 4.1; 

Smakhtin et al. 1997, Madzena and Lasiak 1997). The Mtamvuna River (site 3) is 161 km 

long with a catchment area of 1570 km2. Its mouth is situated in a deep gorge flanked 

by cliffs up to 200 m high at Port Edward (Table 4.1). The lower reach of this estuary is 

characterized by mangrove forests dominated by the genera Bruguiera and Avicennia, 

and it enters the Indian Ocean through a narrow inlet created by the cliffs (Cooper 1993). 

The Thukela River (site 6) is the longest river of the ones chosen for the comparison and 

has the largest catchment area. It follows a 502 km route through the province of 

KwaZulu-Natal, with a total catchment area of approximately 29 100 km2. Annual 

freshwater input into the sea by the Thukela is higher than the other two rivers with 

6.79 x 109 m3/ year (Table 4.1), and its estuary is less influenced by marine waters, 

remaining freshwater dominated at all times (Schumann 2013), with abundant wet reed 

marshes and grasslands along the banks (Oliff 1960). All estuaries selected for this 

comparison remain the whole year permanently open to the ocean year around. 

However, it should be noted that there are other smaller estuaries along the whole coast 

that have very small catchment areas and are generally closed in the dry season, or even 

for several consecutive years (Fig 4.1; Froneman 2002, Perissinotto et al. 2004, Whitfield 

and Bate 2007). The control sites chosen for the comparison were Mbotyi (site 2), 

located in a rural area, far from high-density cities, while Pennington (site 4) and Ballito 

(site 5) are 70 km south and 50 km north of Durban respectively. 

 

Table 4.1 Characteristics of the rivers chosen for the comparison. 

River Length (km) Catchment area (km2) 
Run off 

m3/year 

Freshwater/Marine 

dominated 

Mzimvubu 250 25 000 2.8 x 109   mixed 

Mtamvuna 161 1570 3.03 x 108 mixed 

Thukela  502 29 100  6.79 × 109  freshwater 

 

The filter feeders investigated during this study were the indigenous mussel 

Perna perna, and three species of barnacle: Chthamalus dentatus, Tetraclita serrata and 

Octomeris angulosa. All are well represented along the east coast.  Sampling was carried 

out in May 2012. Sites were separated by 40 - 100 km along a stretch of coast that 
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covered approximately 300 km. At each site,  samples were collected from two locations 

(A and B), separated by 1 - 3 km. Specimens from sites close to rivers were taken at the 

closest rocky shore to the river mouth. Specimens were collected in corresponding of 

their natural microhabitats as described in Chapter 3 (paragraph 3.2.1). Three replicates 

of each species were used for the FA analyses and five for the SI analyses. Because the 

barnacle C. dentatus was relatively small (5 -10 mm diameter), each replicate was 

represented by a pool of animals (5 - 10 individuals), while replicates of T. serrata and 

O. angulosa comprised a single individual. For mussels, one replicate corresponded to 

the adductor muscle of one specimen. Muscle was chosen due to its low turnover rate, 

which  makes it more representative of a time-integrated diet (Gorokhova and Hansson 

1999). Samples for FA and SI analyses were processed using the methods described in 

Chapter 2 (Chapter 2; paragraph 2.2.1 and 2.2.2). 

 

4.2.2. Data analysis  

4.2.2.1. Stable isotopes 

To examine spatial differences in δ13C and δ15N values between areas with and 

without freshwater input, a mixed model design was used, consisting of the factors: river 

(two levels, fixed), site (three levels, random and nested in river), location (two levels, 

random and nested in site) and species (four levels, fixed and crossed with all the other 

factors). Using this design, ANOVA tests were performed in order to assess differences 

among the different conditions. In the event of significant results, Tukey HSD post hoc 

comparisons were used to identify homogenous groups. Levene’s test was used for 

testing the homogeneity of variances. The ANOVA and the post hoc tests were 

performed using STATISTICA v12 (StatSoft Inc. 2012).  

 

4.2.2.2. Fatty acids 

The differences in FA composition between large estuaries and control areas was 

conducted using a PERMANOVA based on a Bray-Curtis dissimilarities matrix with the 

same design as for the SI data analyses. Principal component analysis (PCA) and SIMPER 

were also performed as described in Chapter 2 (paragraph 2.2.3.2.).  
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4.3. Results 

No differences were found between locations within the same sites for any of 

the species using either SI or FA analyses (ANOVA and PERMANOVA respectively, p > 

0.05 in all cases). For this reason, the factor location was not considered in the present 

study and data for locations within sites were pooled. Consequently, n = 10 for SI 

analyses and n = 6 for FA analyses. 

 

4.3.1. Species effect 

 

Fig 4.2 a) Stable isotope signatures δ13C and δ15N (mean ± SD; n = 10 per site), and b) PCA performed on 
the fatty acid composition of four species of filter feeders at six sites on the South African east coast. PC1 
and PC2 explained 49.8 % and 20.8% of the total variance, respectively. 

 

SI and FA signatures were different among the four species of filter feeders, as 

found in the previous chapter (Table 4.2 and 4.3; Fig 4.2; see Chapter 3), with the 

strongest differences being between mussels and the three barnacle species (both 

Tukey HSD and PERMANOVA, p < 0.001). Mussels had higher δ13C and lower δ15N values 

compared to barnacles across all sites, with values of δ13C between -16.5 ‰ and 17.3 ‰ 

and  δ15N  between 7 ‰ and 8.3 ‰, while barnacles were between -17.5 and -18.8 ‰ 

for δ13C  and from 8.6 to 11.4 ‰ for δ15N (Fig 4.2, a). The FA profiles of mussels were 

characterized by higher proportions of non-methylene-interrupted FA (NMI), 20- 

monounsaturated FA (MUFA), 22:4w6 and 22:5w6, while barnacles showed higher 

values of saturated FA (SFA), 20:3-polyunsaturated FA (PUFA), 20:5w3 (EPA), 22:6w3 
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(DHA) and 22-MUFA explaining 65 % of the differences between mussels and barnacles 

(SIMPER). Surprisingly it was also noticed that P. perna, O. angulosa and T. serrata 

generally showed high levels of PUFA (50 – 60 %) at all sites followed by SFA (30 %) and 

MUFA (10 - 20 %), while C. dentatus were SFA enriched at all sites (45 - 70 %; for full list 

of FA see Appendix b). 

Table 4.2 Results of ANOVA performed on δ15N and δ13C of four species of filter feeders at river and non-
river sites. n = 10 per site for each species. Ri = River, Sp = Species, Si = Site, df = degrees of freedom, MS 
= mean square; * p, 0.05; ** p, 0.01; *** p, 0.001. 

    δ 15 N       δ 13 C   

Source df MS F   df MS F   

Ri 1 0.45 2.68   1 0.04 0.14   

Sp 3 110.03 649.50 *** 3 22.33 69.27 *** 

Sp X Ri 3 1.90 11.22 *** 3 0.30 0.93   

Si (Ri) 5 15.35 90.63 *** 5 1.15 3.56 ** 

Si (Ri) X Sp 12 0.42 2.50 ** 12 1.10 3.42 *** 

Error 215 0.17     215 0.32     

 

Strong dissimilarities in δ15N and FA signatures were also recorded among barnacle 

species (Tukey HSD and PERMANOVA, both p < 0.05; Fig 4.2). O. angulosa had enriched 

values of δ15N compared to the other two species (Tukey HSD, p < 0.001) and was 

characterized by higher levels of 14:0, 16:1w7, 16-PUFA, 20-MUFA, 20:4w3 and 20:4w6 

FA (SIMPER). C. dentatus was enriched in SFA, bacterial FA (BAME) and 20:2w6 and T. 

serrata had higher values of 18:1w7, 20:1w11, 20:5w3 and 22:6w3 compared to the 

other two species (SIMPER). No difference was observed between δ15N of C. dentatus 

and T. serrata (Tukey HSD, p > 0.05; Fig 4.2, a), nor among δ13C signatures of the three 

barnacle species (Tukey HSD, p > 0.05).  

Since the species showed strong dissimilarities among each other in both their SI and FA 

signatures, they were considered separately for the remaining analyses. 

 

4.3.2. Riverine and site effects 

None of the species of filter feeders showed a significant effect of the factor river 

using either SI or FA analyses (Table 4.2 and 4.3; Fig 4.3 and 4.4). Salinity records at the 

moment of the sample collection indicated sites had similar salinity value (Table 4.4). 
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Fig 4.3 Stable isotope signatures (mean ± SD; n = 10) of  a) P. perna b) C. dentatus c) O. angulosa d) T. 
serrata at sites close to a river mouth (black symbols) and sites far from freshwater input (open symbols) 
on the South African east coast.  

 

For all species, dissimilarities were only found among sites (both ANOVA and 

PERMANOVA, p < 0.001). In particular, sites 5 and 6 had higher δ15N values than the 

other sites, while δ13C was significantly different among sites, but with no clear pattern 

(Tukey HSD, p < 0.001; Fig 4.3). FA analyses also showed strong dissimilarities among 

sites (PERMANOVA, p < 0.05), but again no clear pattern was found (Fig 4.4). 
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Table 4.3 PERMANOVA results on the fatty acid composition of filter feeders in relation to freshwater 
input on the South African east coasts. Ri = River, Sp = Species, Si = Site, df = degrees of freedom, MS = 
mean square; * p, 0.05; ** p, 0.01; *** p, 0.001. 

Source  df     MS   F p 

Ri  1 145.71 0.32   

Sp 3 7512.90 40.18 *** 

Si (Ri) 4 452.54 9.54 *** 

Ri x Sp 3 64.44 0.34   

Si (Ri) x Sp 12 186.97 3.94 *** 

Residual 120 47.44                  

 

 

 

Fig 4.4 Principal component analyses (PCA) performed on the fatty acid composition of four species of 
filter feeders a) P. perna b) C. dentatus c) O. angulosa d) T. serrata at sites close to river mouths (black 
symbols) and sites far from freshwater input (open symbols) on the South African east coast (n = 6 per 
site).  
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Table 4.4 Salinity values recorded at each location at the moment of the sampling. 

Site Location Salinity ( ‰ ) 

1- Mzimvubu A 33 

  B 34 

2- Mbotyi A 33 

  B 34 

3- Mtamvuna A 34 
  B 36 

4- Pennington A 35 

  B 34 

5- Ballito A 34.5 

  B 36 

6- Thukela  A 35 

  B 36 
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4.4. Discussion  

Strong differences among species across all sites were recorded with both SI and 

FA analyses. Mussels generally had higher δ13C and lower δ15N values than barnacles, 

and were characterized by different FA, including NMI FA which were completely absent 

from barnacles. In addition, differences among the δ15N and FA signatures of the three 

barnacle species were also evident, in particular between O. angulosa and the other two 

species. These results are in agreement with the finding of Chapter 3, though mussels 

and barnacles from the present study had more depleted δ15N than the conspecific of 

the south coast (see Chapter 3). These dissimilarities among species can be explained by 

different factors such as the microhabitats where the specimens were collected 

(Griffiths 1980, Wen-Xiong and Fisher 1996, Gardner 2002), different metabolic 

pathways or feeding mechanisms (Tenore and Dunstan 1973, Rubenstein and Koehl 

1977, Narváez et al. 2008; Chapter 3) as discussed in Chapter 3. 

The present study did not reveal any effect of freshwater input on the SI or FA 

signatures of filter feeders. These results are in agreement with a previous study 

conducted on the east coast of South Africa, which highlighted specimens of rocky shore 

filter feeders were exposed to a marine food source (Hill and McQuaid 2006). The South 

African east coast is characterized by a large number of rivers (Whitfield and Bate 2007), 

but, with the exception of the Natal Bight, the continental shelf is narrow, with the 

Agulhas Current remaining within few kilometers off the coast as it follows the 200 m 

isobath (Lutjeharms 2006). A few explanations can be given for the lack of freshwater 

effect. Firstly, coastal currents can change their directions in time depending on the 

hydrodynamic features of the area (e.g. presence of eddies) or wind direction (Roberts 

et al. 2010). Hence, freshwater input can reach areas either downstream or upstream of 

a river mouth and therefore lead to a well-mixed environment. As a consequence of this 

chaotic hydrodynamic on the coast, it is possible that specimens collected close to river 

mouths were as affected by freshwater input as the control sites, which would explain 

the absence of differences between the two conditions. Another explanation is simply 

dilution, with freshwater near the river mouth being thoroughly mixed with seawater, 

resulting in a riverine influence being too weak to be detectable in the FA or SI signatures 

of benthic populations. Very few studies have investigated the effects of freshwater 

input on the dietary regime of coastal benthic populations using FA techniques. Richoux 
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et al. (2014a) similarly found a minor contribution of (< 10 %) of estuarine carbon in the 

nearshore SPM in the vicinity region of a river mouth and concluded that freshwater 

input did not have a discernible effect on benthic populations located either upstream 

or downstream of a river mouth. The lack of effects of freshwater input on FA signatures 

suggests that this factor did not play a significant role in the food available for intertidal 

filter feeders in the present study. These results are supported by the instantaneous 

salinity data recorded at each location during the sampling collection, which did not 

show variation among sites close and far from a river mouth. However it is important to 

highlight that salinity changes very frequently on a hourly basis; consequently what was 

observed in the present study does not necessarily reflect what occurs in nature. 

The present results contrast with another study conducted in the Natal Bight, in 

which the SI signatures of demersal organisms, sediment and SPM were analysed at 

several sites and depths during austral summer and winter (De Lecea et al. 2013). The 

authors found that the SPM available for demersal communities had mainly a 

freshwater origin. In the present study, the δ13C values of filter feeders from sites within 

the Natal Bight (sites 5 and 6) were not statistically different from the other four sites 

with values comprised between -16.53 and -18.76 ‰, which reflected a marine origin 

signature according to Hill and McQuaid (2006). This suggests that intertidal filter 

feeders within and outside the Natal Bight, were reliant on the same food sources. In 

the present study the sampling was conducted in May 2012 (late autumn/winter), 

whereas De Lecea et al. (2013) sampled during the wet (summer) and dry (winter) 

seasons in 2010. Winter on the east coast of South Africa is the dry season where rainfall 

is low and freshwater inputs to the sea are reduced (Whitfield and Harrison 2003); in 

addition several estuaries of this coastline are temporarily closed during the dry season 

(Whitfield and Bate 2007). Therefore, it was expected that samples from the present 

study would be less strongly influenced by freshwater inputs compared with those of De 

Lecea et al. (2013). The different timing of sampling, however, cannot explain entirely 

the discrepancy between the two studies, as the SI turnover signatures of mussels is 

about 9 months (Hill and McQuaid 2009), which should reflect the diet observed 

averaged over the wet and dry seasons. A more likely explanation for this discrepancy 

can be attribute to the cycle of organic matter from rivers to marine systems. Several 

physical and biological processes are responsible for the transport of organic matter 
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from the continent to the ocean (Gagosian and Peltzer 1986, Hedges et al. 1997, Herfort 

2006). Rivers carry large quantities of terrestrially derived dissolved and particulate 

organic matter into estuaries and then oceans, and have a fundamental role in the global 

carbon cycle (Schlesinger and Melack 1981, Hedges et al. 1997, Herfort 2006). Part of 

this organic material is remineralized in the water column (Williams and Druffel 1987), 

and another part is deposited in marine sediments (Hedges and Keil 1995, Mueller-Lupp 

et al. 2000, Hopmans et al. 2004). The intertidal area is generally considered as a 

transition zone between the terrestrial and marine environments where the organic 

matter of terrestrial origins does not remain, but simply passes through en route to the 

open sea (Levin et al. 2001). This is particularly true for rocky shores, which are areas of 

erosion (Ginsburg 1953). It might have been impossible to detect a riverine effect on the 

dietary regime of intertidal filter feeders in this study because the freshwater origin 

organic matter did not remain in the intertidal zone enough time. In contrast, De Lecea 

et al. (2013) observed an influences of freshwater SPM in the Natal Bight because 

organic matter is remineralized and deposited as sediment in the ocean as suggested by 

Ayers and Scharler (2011). It is important to notice that the conclusions of De Lecea et 

al. (2013) are based on the SI of the SPM collected and not on the consumers 

themselves. Indeed, in their investigation, the SI signature of the SPM had a clear 

freshwater signature, but the SI signatures of some demersal species, including filter 

feeders (i.e. bivalvia, decapoda) were within the same SI range as the species considered 

in the present study. This is surprising since species that rely on different food sources 

should exhibit different stable carbon signatures (Tieszen et al. 1983, Kaehler et al. 

2000). Therefore, caution should be used in the comparison between these two studies. 

The present study returned a higher δ15N signature for all the species at sites 

within the Natal Bight (sites 5 and 6) compared to the other four sites further south 

along the South African coast. The Natal Bight is a relatively homogeneous environment 

in which water circulation involves a branch of water from the Agulhas Current (which 

has a southward direction), coming close to the shore and then taking a northerly 

direction in the area of Durban (Lutjeharms et al. 2000, Meyer et al. 2002). The Bight 

also receives nutrients from the upwelling cell located in the north of it (Meyer et al. 

2002). A previous study conducted along the South African coast showed a 

biogeographic decrease from north-east to south-west in nitrogen isotope signatures of 
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filter feeders and suspended particulate matter (SPM; Hill and McQuaid 2006, see for 

further details Chapters 3 and 5), which seem to reflect an isotopic gradient from 

oligotrophic to more eutrophic water conditions occurring along the coast of South 

Africa, as described by Saino & Hattori (1980) and Minagawa & Wada (1984). The results 

of the present study seem to follow this same pattern. Another explanation of this 

pattern could also be related to the presence of cities inside the Bight (Richards Bay and 

Durban) with strong anthropogenic effects (Cloete and Oliff 1976, Vermeulen and 

Wepener 1999). As discussed in details in the previous chapter, cities such as these are 

likely to affect nutrient input into the sea, subsequently affecting the isotope signatures 

of benthic populations and may explain the enriched δ15N (see Chapter 3). Both Durban 

and Richards Bay are cities with high levels of urbanization along the coast, and are 

characterized by the presence of harbours with extensive maritime traffic (Siko 1996). 

Considering the current circulation described here and the fact that the Natal Bight is an 

homogeneous environment (Meyer et al. 2002), it is possible that anthropogenic 

nutrients from the two cities affected the δ15N of the specimens collected at the two 

sites 5 and 6. However, further studies to confirm or refute the existence of 

anthropogenic effects in this area are needed. 

The present study clearly showed that freshwater input has little or no direct 

influence on the food sources for rocky intertidal populations of coastal areas, from few 

meters to a few km from the river mouth as observed in earlier studies (Vorwerk and 

Froneman 2009, Richoux et al. 2014a, 2014b). Since the hydrodynamics close to the river 

mouth, and consequently the contributions of terrestrially derived matter to coastal 

consumers, may diminish in the future with increased development of watersheds or 

human activities (e.g. harbour developments; Correll et al. 2001), even previously 

observed effects of freshwater input on marine populations are likely to be reduce. 
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5. Effect of oceanographic processes operating at different spatial scales 

on the dietary regime of intertidal filter feeders 

 

5.1. Introduction 

The main factors driving marine large spatial scale (i.e. 100s km) patterns in 

primary production are temperature, solar radiation and nutrient availability (Field et al. 

1998, Cramer et al. 1999, Elser et al. 2007). Temperature affects metabolic rates and as 

such acts on growth, reproduction and the productivity of primary producers (Grime 

1977, Xiong et al. 2000). Solar radiation strongly affects the rate of photosynthesis 

(Bondeau et al. 1999, Nemani et al. 2003), while macro- and micro- nutrients frequently 

limit primary production in marine systems (Howarth 1988). All these factors control the 

intensiy of activity and the type of primary producers in the system, which subsequently 

affects the quantity and quality of the food available for primary consumers (McGuire 

et al. 1997, Blanchette et al. 2006, Lutjeharms 2006). Primary consumers, such as 

benthic filter feeders, play a critical role in natural ecosystems, as they act as an 

intermediate trophic pathway between autotrophic organisms and higher predators 

(Smith et al. 2009). Modifying the base of the food web can affect the physiology and 

distribution of higher consumers, and ultimately the functioning of the entire ecosystem 

(Connell 1985, Menge 2000, Dodson et al. 2000, Lavorel and Garnier 2002, Le Bauer and 

Treseder 2008).  

Among biogeographic provinces (i.e. at large scales), primary production is 

strongly affected by large hydrogeographic regimes. In particular, currents play a 

fundamental role in coastal areas by mixing coastal and offshore production, potentially 

leading to changes in food availability for benthic populations. Along the South African 

coast, Bustamante et al. (1995) and Hill and McQuaid (2006) showed a biogeographic 

gradient of intertidal chlorophyll a concentration and a gradient in the stable isotope 

signatures of suspended particulate organic matter (SPM), respectively, that were 

mainly driven by the presence of the warm oligotrophic Agulhas Current on the south 

and east coasts and the eutrophic cold water Benguela Current on the west coast.  

At a smaller spatial scales (i.e. mesoscales 10s-100s km), localized oceanographic 

events, such as upwelling or local currents, are amongst the main drivers of variability  

in primary production (Basterretxea and Arístegui 2000, Demarcq 2009). Coastal 
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upwelling events bring cold, nutrient-rich water into the euphotic zone, enhancing 

primary production locally. Consequently upwelling events affect the species 

composition of primary producers in the water column and thus the quantity and/or 

quality of food available for benthic populations (Figueiras et al. 2002, Blanchette et al. 

2006). Changes in food availability in coastal areas can have profound consequences for 

benthic populations, influencing recruitment success, survival, growth, abundance and 

reproduction of organisms. For instance, Xavier et al. (2007) found that upwelling events 

along the South African west coast promote growth of intertidal mussels, and Wing et 

al. (1995) showed that upwelling enhances the settlement of marine invertebrates along 

the west North American coast, while Sanford and Menge (2001) found that barnacles 

living in upwelling areas show high growth rates during and after upwelling driven 

phytoplankton blooms, due to the combined benefits of an increase in phytoplankton 

and micro-zooplankton. 

Finally, at local spatial scales (from one to a few km), other factors such as wave 

action or the presence of kelp forest, contribute to local variability in primary 

production. The intensity of wave action can influence the distribution of primary 

production in coastal areas and hence the food available for intertidal organisms (Eisma 

and Kalf 1987, Carter 1988, Bustamante et al. 1995). The presence of kelp forests is also 

another factor to take into consideration as kelp detritus represents an important 

source of primary production at local (one to few km) spatial scales. Duggins et al. (1989) 

showed that growth rates of benthic suspension feeders were two to five times higher 

on kelp dominated islands compared to islands without kelp, while Bustamante and 

Branch (1996a) highlighted the importance of kelp-derived detritus as the main source 

of organic carbon for benthic filter feeders on the South African west coast. 

The aim of the present study is to evaluate the effect of large and mesoscale 

processes on the dietary regime of intertidal filter feeders. Specifically the effects of 

biogeography and upwelling were investigated. The biogeographic provinces of the 

South Africa coastline and the gradient of upwelling intensity around the South African 

coasts provide a unique opportunity to investigate how these oceanographic processes 

operating at different spatial scales affect the diet of benthic filter feeders. By using two 

complementary techniques (fatty acid and stable isotope analyses) the present work 

aims to establish: (1) the effect of biogeography on the dietary regimes of intertidal 
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primary consumers; (2) whether the diets of benthic filter-feeders are influenced by 

upwelling and (3) if the diet of these organisms differs at local spatial scales. 
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5.2. Materials and Methods 

5.2.1. Study area and sample collection 

 

 
Fig 5.1 Map of South Africa showing the sampling sites in three biogeographic provinces: west coast 
(circles), south coast (triangles) and east coast (squares).  Sites were in either upwelling or non-upwelling 
areas (black and grey, respectively). Site 1 (Groenrivier), site 2 (Doring Bay), site 3 (Lambert’s Bay), site 4 
(Cape Columbine), site 5 (Bloubergstrand), site 6 (Jongensfontein), site 7 (Brenton on Sea), site 8 (St. 
Francis Bay), site 9 (Port Alfred), site 10 (Kidd’s beach), site 11 (Mbotyi), site 12 (Pennington) and site 13 
(Ballito). All the sites in grey were used to test the effects of biogeography.  To test the effects of upwelling 
within provinces, four sites each on the west and south coasts were allocated to regions (A or B) within 
each province. Tests of upwelling involved the 8 sites in these four regions. 
 

 

The study was conducted along the South African coast (Fig 5.1, 34.4-29.1° S - 

17.9-31.3° E). The South African coast can be divided into three biogeographic provinces 

roughly corresponding to the three coasts: west, south and east (Fig 5.1). Each coast is 

subjected to localized upwelling events occurring sporadically over the year for variable 

periods of time. On the west coast, the northwards flowing Benguela Current brings cold 

eutrophic waters and is characterised by strong, wind-driven upwelling events, 

occurring seasonally along the Cape Peninsula in the south, becoming more frequent 

northwards, with persistent upwelling around the region 60 km north of Groenrivier 

(site 1; Andrews and Hutchings 1980, Carr and Kearns 2003). On the south and east 

coasts, the Agulhas Current carries oligotrophic warm water flowing along the coast 

from the Mozambique Channel (Probyn et al. 1994, Lutjeharms et al. 2000). The south 

coast experiences wind driven upwelling, with a semi-permanent upwelling cell close to 
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Port Alfred (site 9). On this coast, upwelling events occur frequently over the year but 

with less intensity than on the west coast (Schumann et al. 1982, Walker 1986). The 

South African east coast experiences some upwelling events, but these are rare and 

weak (Lutjeharms 2006), and were not considered in the present study. The transition 

between the south and east coast biota corresponds to the offshore shift of the Agulhas 

Current. As a consequence, the two coasts have different water temperatures, with the 

south coast being slightly cooler that the east coast (Lutjeharms 2006). 

The filter feeders investigated during this study were two species of mussels, the 

introduced Mytilus galloprovincialis and the indigenous Perna perna, and one species of 

barnacle Chthamalus dentatus. Neither species of mussel occurs around the whole coast 

of South Africa, P. perna is present on the south and east coasts, whereas M. 

galloprovincialis is present on the west and south coasts (Griffiths et al. 2009). In the 

present study, only one species of mussel was used on each coast, hence M. 

galloprovincialis was the species collected on the west coast and P. perna on the south 

and east coasts. The only barnacles used for this comparison was C. dentatus because it 

is present along all three coasts of South Africa. 

To examine how biogeography and upwelling affect the dietary composition of 

these filter feeders, 13 sites were chosen (Fig 5.1). Sites were separated by hundreds of 

kilometres and within each site, samples were collected from two locations separated 

by 1-3 km. Sampling was conducted between April and June 2012. In order to test the 

effects of biogeography, three non-upwelling sites were chosen on each of the three 

coasts. These sites were: 2, 3, 5 on the west coast; 6, 8, 10 on the south coast and 11, 

12 and 13 on the east coast (Fig 5.1). Two sites of upwelling and two sites of non-

upwelling were sampled along the south and west coasts to test the effects of upwelling 

on filter-feeder diets. Sites 1 and 4 were considered as upwelling sites on the west coast 

and 7 and 9 on the south coast, while sites 2 and 5, 8 and 10 were the non-upwelling 

sites for the west and south coasts respectively (Fig 5.1). Sites 1 and 9 have continuous 

or very frequent upwelling events throughout the year, whereas site 4 has seasonal 

upwelling and site 7 experiences sporadic upwelling events (Andrews and Hutchings 

1980, Schumann et al. 1982, Lutjeharms 2006). Further analyses were conducted to 

assess differences between upwelling cells within the same biogeographic province by 

comparing region A (sites 1 and 2) and B (sites 4 and 5) on the west coast, and region A 
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(sites 7 and 8) with region B (sites 9 and 10) on the south coast (Fig 5.1). At each location, 

haphazardly selected replicates of mussels and barnacles were collected. Three 

replicates of each species were used for the fatty acid (FA) analyses and five for the 

stable isotope (SI) analyses. Each barnacle replicate was represented by a pool of 

animals due to their small size, while for mussels the adductor muscle of a single 

individual was used due to the low turnover rate of this tissue, which renders it 

representative of a time integrated diet (Gorokhova and Hansson 1999). Samples for FA 

and SI analyses were processed with the same methods as described in Chapter 2 

(Chapter 2; paragraph 2.2.1 and 2.2.2). 

 

5.2.2. Data analysis  

5.2.2.1. Stable isotopes 

To examine spatial differences in δ13C and δ15N among the biogeographic 

provinces and between upwelling and non-upwelling areas, two mixed model ANOVA 

designs were used. To test the effects of biogeography, the design was composed of the 

factors: biogeographic province (three levels, fixed), site (three levels, random and 

nested in biogeographic province), location (two levels, random and nested in site) and 

species (two levels, fixed and crossed with biogeographic province, site and location). A 

second model used to test the effects of upwelling had the following four factors: 

upwelling (two levels, fixed), site (two levels, random and nested in upwelling), location 

(two levels, random and nested in site) and species (two levels, fixed and crossed with 

upwelling, site and location). In order to assess possible variability in the effects of 

upwelling within biogeographic provinces, a third mixed model design was used with 

the factors: upwelling (two levels, fixed), region (two levels, fixed and crossed with 

upwelling), location (two levels, random and nested in upwelling) and species (two 

levels, fixed and crossed with all the other factors). In the event of significant results, 

Tukey HSD post hoc tests was performed. The violation of homogeneity of variances was 

considered to be acceptable because ANOVA is relatively robust to heterogeneous 

variances for large designs such as the one in this study (Underwood 1997). Variance is 

reported as one standard deviation (SD) from the mean. Analyses were performed using 

STATISTICA v12 (StatSoft Inc. 2012).  
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5.2.2.2. Fatty acids 

The study compared the FA composition of the species in the three 

biogeographic provinces of the South African coast, under upwelling and non-upwelling 

conditions and within provinces, using the same experimental designs as for the SI data 

analyses. A Multivariate Permutation Analysis (PERMOANVA; Anderson 2001) was used 

in order to assess differences among factors. Each term in the analysis was tested using 

> 9999 permutations as the relevant permutable units (Anderson and Braak 2003). 

Canonical Analysis of Principal coordinates (CAP, Anderson and Willis 2003, Anderson et 

al. 2008), a constrained ordination method that displays multivariate data with 

reference to a priori hypotheses, was used in order to investigate differences in FA 

signatures among species in relation to the different hypotheses (Anderson 2001, 

Anderson et al. 2008). The CAP analysis was based on Bray-Curtis dissimilarities 

calculated from percentage data after square root transformation. Vector overlays 

based on Pearson correlations (correlation between the variable (FA) and the CAP axes; 

correlation value > 0.3) were used in order to identify the FA influencing the axes. Only 

FA forming > 1 % of total FA (TFA) were considered in the analyses. All analyses were 

conducted using the PERMANOVA+ add-on package of PRIMER v6 (Clarke and Gorley 

2006, Anderson et al. 2008). 
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5.3. Results  

5.3.1. Stable isotopes 

5.3.1.1. Differences among biogeographic provinces 

Filter feeders clearly revealed different SI signatures depending on the 

biogeographic province considered (Table 5.1, Fig 5.2). West coast samples in particular 

were grouped significantly apart from samples from the south and east coasts (Tukey 

HSD, p < 0.001), which showed more dispersed δ13C and δ15N signatures. These patterns 

were observed for both mussels and barnacles (Tukey HSD, p < 0.05 in both cases, Fig 

5.2). It is worth noticing that Chapters 3 and 4 revealed strong differences among species 

within the south and east coasts respectively. Here, however, it appears that 

biogeography has a stronger effect, with the different species tending to group together 

according to their biogeographic origin.  

 

  
Fig 5.2 Stable isotope signatures (mean ± SD; n = 5) of mussels (circles) and barnacles (triangles), collected 
in the three South African biogeographic provinces: east (grey), south (black) and west (white) coasts. 

 

Variations were also observed within each biogeographic province, with the δ15N of 

mussels decreasing from 8.3 to 6.9 ‰ from north-east to south-west along the east 

coast and increasing from 6.9 to 8.7 ‰ from east to west on the south-west coasts (Fig 

5.3). The δ13C signatures of mussels varied widely among the three coasts. δ13C became 

enriched from north-east to south-west along the east and south coast, and samples 

from the west coast were more enriched in carbon δ13C than the other two coasts (-17/ 
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-15.5 ‰ east, -16.5/ -15.5 ‰ south, -14.7/ -14.5 ‰ west). Barnacle signatures showed 

exactly the same pattern to mussels in terms of both carbon and nitrogen, but with 

generally higher average values (δ15N values = 9.3, 10.5, 8.3 ‰, and δ13C values = -18.6, 

-17.5, -15.2 ‰ respectively for the west, south and west coasts, Fig 5.3). 

 

Table 5.1 ANOVA of stable isotope analyses performed on two groups of filter feeders (barnacles and 
mussels) in the three South African biogeographic provinces. Bp = Biogeographic province, Sp = Species, 
Si = Site, Loc = Location; df = degrees of freedom, MS = mean square; * p, 0.05; ** p, 0.01; *** p, 0.001. 

    δ13C     δ15N     

 Biogeography df MS F   df MS F   

Bp 2 103.46 789.67 *** 2 14.60 132.45 *** 

Sp 1 44.49 339.60 *** 1 63.27 574.10 *** 

Sp X Bp 2 3.95 30.18 *** 2 21.48 194.96 *** 

Si (Bp) 6 2.06 15.74 *** 6 11.41 103.58 *** 

Si (Bp) X Sp 6 0.46 3.53 ** 6 0.70 6.40 *** 

Loc (Si (Bp)) 9 0.61 4.62 *** 9 0.25 2.27 * 

Loc (Si (Bp)) X 
Sp 

9 0.36 2.76 ** 9 0.09 0.78   

Error 109 0.13     109 0.11     

 

Significant differences among sites within the same province were found for both 

filter feeder types (Table 5.1 and 5.2). Tukey HSD tests highlighted dissimilarities among 

sites within the same biogeographic province for the δ13C (p < 0.01), though not 

barnacles (p > 0.05), and for the δ15N of both mussels and barnacles (p < 0.01); however 

no species showed a clear geographic pattern. 

Differences between locations within the same sites were evident for δ15N at site 

8 for both species, while δ13C showed more variation, differing between locations at 

almost all sites for mussels and only at site 10 for barnacles (Tukey HSD, p < 0.01). 
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Fig 5.3 δ15N and δ13C (mean ± SD; n = 10) of mussels (a and c) and barnacles (b and d) at the 13 sites of 
the comparison within the 3 biogeographic provinces: east (grey square), south (black triangle) and west 
(white circle) coasts. Sites are numbered as in Fig 5.1, from the west to the east coast. 

 

5.3.1.2. Upwelling effect 

Potential upwelling effects were analysed separately for the west and south 

coasts due to the clear differences amongst biogeographic provinces highlighted above.  
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Table 5.2 Stable isotope ANOVA results preformed for filter feeders in relation to upwelling effect. Up = 
Upwelling, Sp = Species, Si = Site, Loc = Location; df = degrees of freedom, MS = mean square; * p, 0.05; 
** p, 0.01; *** p, 0.001. 

      δ 13 C     δ 15 N     

    df MS F   df MS F   

west coast Up 1 75.89 730.32 *** 1 0.03 0.27   

  Sp  1 13.30 128.00 *** 1 0.04 0.29   

  Up X Sp 1 0.97 9.34 ** 1 0.01 0.08   

  Si (Up) 2 10.14 97.59 *** 2 9.94 80.38 *** 

  Si (Up) X Sp 2 1.16 11.12 *** 2 1.26 10.20 *** 

  Loc (Si (Up)) 4 0.38 3.68 ** 4 0.10 0.79   

  Loc (Si (Up)) X Sp 4 0.19 1.82   4 0.12 0.94   

  Error 64 0.10     64 0.12     

south coast Up 1 4.13 20.80 *** 1 5.78 48.64 *** 

  Sp  1 28.54 143.63 *** 1 90.54 762.32 *** 

  Up X Sp 1 2.04 10.28 ** 1 0.11 0.91   

  Si (Up) 2 5.10 25.67 *** 2 29.50 248.41 *** 

  Si (Up) X Sp 2 0.27 1.34   2 0.30 2.50   

  Loc (Si (Up)) 4 0.76 3.80 ** 4 0.81 6.79 *** 

  Loc (Si (Up)) X Sp 4 1.05 5.30 *** 4 0.14 1.15   

  Error 64 0.20     64 0.12     

 

Significant upwelling effects were found for mussels and barnacles on both the 

south and the west coasts (Table 5.2). Mussels and barnacles from upwelling sites had 

depleted δ13C signatures compared to the non-upwelling sites (Fig 5.3 and Fig 5.4, a and 

c). This effect was stronger on the west coast, in particular at site 1, which has 

continuous upwelling, and for mussels, for which a depletion of carbon at upwelling sites 

was more evident than for barnacles (Fig 5.3 and Fig 5.4, a and c). The two non-upwelling 

sites on the west coast (2 and 5) had similar δ13C values (Tukey HSD, p > 0.05). In 

contrast, there were no effects of upwelling on the nitrogen signatures of mussels or 

barnacles on the west coast (Table 5.2, Fig 5.4 a and c). On the south coast, depletion of 

δ13C ratios at upwelling sites was again evident for both types of filter feeders (Table 

5.2) with a more intense effect for mussels. As for the west coast, the site with 

continuous upwelling, site 9, showed stronger effects than the other upwelling site on 

the south coast (Tukey HSD, p < 0.01; Fig 5.3 and Fig 5.4, b and d). There was also a 

significant effect of site on nitrogen signatures (Table 5.2). Tukey HSD tests highlighted 

sites 7 and 8 had similar δ15N signatures in both species (Tukey HSD, p > 0.05), while site 

9 had higher nitrogen signatures than site 10 only in mussels (Tukey HSD, p < 0.05). 

Tukey HSD also highlighted differences in δ15N between locations at site 8 on the south 
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coast for both species (p < 0.01), and dissimilarity in δ13C between locations at sites 2, 

8, 9 for mussels and at site 10 for barnacles (p < 0.01). The location effect did not 

influence the results of the other factors. 

 

 

Fig 5.4 δ13C and δ15N signatures of intertidal mussels (circles) and barnacles (triangles) at locations within 
upwelling (black) and non-upwelling (grey) sites on the west and south coasts (mean ± SD; n = 5). The 
open symbols refer to samples from region A, filled symbols refer to region B. 

 

5.3.1.3. Region effect 

At the intra-province level, a clear separation between the two regions (A and B) was 

found on each coast for both filter feeder types (ANOVA, p < 0.01). δ13C was depleted at 

upwelling sites on both coasts, with a stronger upwelling effect within each coast where 

upwelling was continuous or very frequent over the year (site 1, Groenrivier, and site 9, 

Port Alfred, for the west and south coasts respectively). When the factor region was 

considered on the west coast, upwelling still had no significant effect on δ15N for either 

species (ANOVA, p > 0.05), while on the south coast in region A for barnacles and in 
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region B for mussels, nitrogen signatures were higher at upwelling sites compared to 

non-upwelling sites (ANOVA, both p < 0.05). In addition, Tukey HSD (p < 0.01) highlighted 

an increase of δ15N from region A to region B for both species. 

 

5.3.2. Fatty acid composition 

PERMANOVA conducted on the FA composition of barnacles and mussels 

indicated significant differences in their signatures across all sites (p < 0.001). The 

presence of FA synthesized de novo (NMI, non-methylene interrupted fatty acids) by 

mussels prevented direct comparison with the barnacles (Table 5.3 andTable 5.4), hence 

barnacles and mussels were analysed separately.  

 

5.3.2.1. Biogeography 

Twenty-four FA were found for mussels and sixteen for barnacles that 

contributed > 1 % of the TFA (Table 5.3 and 5.4). The proportions of monounsaturated 

(MUFA), polyunsaturated (PUFA) and saturated FA (SFA) differed among the three 

coasts. Specifically, mussels generally showed high levels (50 - 60 %) of PUFA on all 

coasts, followed by SFA (30 %) and MUFA (10 - 20 %). Overall w-3 FA (i.e. 22:6w3, 

20:5w3), 20:4w6 and 22 NMI were the predominant FA counting for 25 - 50 % of TFA 

(Table 5.3). For the barnacle C. dentatus, SFA were enriched on all coasts with high 

values of 16:0, 18:0 and bacterial FA (BAME, ~ 25 – 70 %), though 20:5w3 and 22:6w3 

still formed a high (28 - 44%) proportion of the TFA (Table 5.4). 
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Table 5.3 Total fatty acid composition (% of TFA) of mussels (P. perna on the south and east coasts and M. galloprovincialis on the west coast) collected at 13 sites across three 
biogeographic provinces. The values are percentages expressed as mean ± standard deviation. Only FA contributing > 1 % to TFA are displayed. 
Fatty 

acids           west coast                           south coast                       east coast       

  Site 1 Site 2  Site 3  Site 4  Site 5  Site 6  Site 7  Site 8  Site 9 Site 10 Site 11  Site 12  Site 13  

  Groenrivier Doring Bay Lambert's Bay Cape Columbine Bloubergstrand Jongensfontein Brenton on Sea St. Francis Bay Port Alfred Kidd's beach Mbotyi Pennington Ballito 

                                            

14:0 0.73 ± 0.19 1.13 ± 0.31 0.85 ± 0.15 0.77 ± 0.20 1.50 ± 0.30 1.96 ± 0.32 4.09 ± 0.72 2.08 ± 0.41 2.33 ± 0.19 2.65 ± 0.47 2.30 ± 0.44 3.34 ± 0.99 3.33 ± 1.30 

16:0 18.70 ± 1.41 24.07 ± 2.37 19.67 ± 1.60 18.70 ± 0.58 21.21 ± 1.63 20.32 ± 3.05 30.18 ± 6.89 17.45 ± 2.98 15.52 ± 2.69 18.64 ± 3.61 15.38 ± 1.14 17.71 ± 4.02 25.81 ± 8.49 

16:1w7 1.82 ± 0.62 3.03 ± 0.90 2.41 ± 1.01 2.48 ± 0.91 4.12 ± 1.31 2.54 ± 0.33 3.07 ± 0.52 3.11 ± 0.52 4.02 ± 0.49 3.90 ± 0.27 4.31 ± 0.86 5.89 ± 1.78 5.58 ± 1.67 

18:0 5.30 ± 0.77 6.53 ± 1.15 5.70 ± 0.48 5.30 ± 0.68 5.54 ± 0.99 8.41 ± 1.48 12.08 ± 2.75 8.57 ± 2.30 8.91 ± 0.89 10.10 ± 2.40 7.49 ± 0.76 7.23 ± 1.41 10.92 ± 2.08 

18:1w9 1.36 ± 0.40 1.32 ± 0.28 1.06 ± 0.43 1.90 ± 0.61 1.50 ± 0.40 1.39 ± 0.16 1.98 ± 0.50 1.47 ± 0.31 1.45 ± 0.28 1.99 ± 0.45 1.62 ± 0.13 2.16 ± 0.68 2.97 ± 0.57 

18:1w7 2.29 ± 0.38 1.85 ± 0.31 2.12 ± 0.44 2.29 ± 0.14 2.58 ± 0.28 2.11 ± 0.35 2.07 ± 0.24 2.51 ± 0.67 2.92 ± 0.56 2.57 ± 0.38 2.65 ± 0.73 2.87 ± 1.09 2.37 ± 0.61 

18:2w6 1.52 ± 0.47 0.72 ± 0.12 0.77 ± 0.19 1.63 ± 0.26 1.04 ± 0.11 2.52 ± 0.46 1.33 ± 0.70 2.03 ± 0.57 2.30 ± 0.39 1.68 ± 0.68 3.37 ± 0.65 3.43 ± 0.54 1.97 ± 1.28 

18:3w3 0.87 ± 0.38 0.23 ± 0.14 0.41 ± 0.14 0.92 ± 0.26 0.52 ± 0.14 0.84 ± 0.28 0.40 ± 0.47 0.73 ± 0.41 0.98 ± 0.52 0.47 ± 0.42 1.29 ± 0.25 1.02 ± 0.24 0.53 ± 0.46 

18:4w3 1.09 ± 0.43 1.16 ± 0.47 1.50 ± 0.35 1.54 ± 0.49 1.14 ± 0.52 0.61 ± 0.20 0.34 ± 0.58 0.83 ± 0.61 0.69 ± 0.31 0.25 ± 0.30 1.00 ± 0.27 0.91 ± 0.25 0.21 ± 0.24 

20:1w11 1.15 ± 0.26 1.24 ± 0.13 1.30 ± 0.26 0.90 ± 0.47 1.45 ± 0.12 1.53 ± 0.28 1.57 ± 0.31 1.50 ± 0.21 1.46 ± 0.18 1.48 ± 0.20 2.60 ± 0.57 2.24 ± 1.97 2.21 ± 0.89 

20:1w9 4.66 ± 0.46 4.71 ± 0.87 4.30 ± 0.42 4.71 ± 1.74 3.75 ± 0.30 3.97 ± 1.06 6.70 ± 1.63 4.12 ± 0.95 3.58 ± 0.59 5.15 ± 1.14 2.80 ± 0.18 3.50 ± 0.95 7.07 ± 2.40 

20:1w7 0.62 ± 0.22 0.79 ± 0.35 0.85 ± 0.13 1.45 ± 1.33 1.26 ± 0.19 0.70 ± 0.28 1.29 ± 0.39 1.41 ± 0.40 1.37 ± 0.27 1.66 ± 0.47 0.81 ± 0.19 1.62 ± 1.23 1.02 ± 0.44 

20:2 NMI1 6.01 ± 1.18 4.73 ± 0.75 5.93 ± 0.96 5.55 ± 2.11 4.31 ± 0.91 4.28 ± 0.80 2.55 ± 0.84 4.68 ± 0.79 4.07 ± 0.64 3.87 ± 0.75 4.65 ± 1.64 5.12 ± 2.74 2.31 ± 0.79 

20:2 NMI2 1.43 ± 0.56 1.26 ± 0.45 1.05 ± 0.16 1.89 ± 1.42 1.20 ± 0.73 0.58 ± 0.22 1.00 ± 0.67 0.99 ± 0.94 0.49 ± 0.28 0.84 ± 0.43 0.57 ± 0.26 1.08 ± 0.40 1.21 ± 0.59 

20:4w6 4.84 ± 0.27 3.19 ± 0.67 2.97 ± 0.65 5.39 ± 1.75 3.31 ± 0.94 5.17 ± 0.86 2.31 ± 1.18 5.55 ± 1.38 5.27 ± 0.54 5.44 ± 1.27 7.91 ± 0.54 6.73 ± 1.67 4.36 ± 2.35 

20:5w3 10.20 ± 1.79 8.25 ± 1.81 10.68 ± 1.41 13.98 ± 2.65 16.76 ± 3.78 5.76 ± 1.57 2.94 ± 2.51 7.28 ± 3.47 8.09 ± 1.66 5.09 ± 2.21 8.50 ± 2.04 6.12 ± 2.55 2.97 ± 1.93 

22:2w6 0.85 ± 0.39 0.98 ± 0.37 1.08 ± 0.35 1.39 ± 0.37 0.69 ± 0.19 2.06 ± 0.49 1.18 ± 0.40 2.21 ± 0.44 2.17 ± 0.36 2.14 ± 0.53 1.98 ± 0.36 1.99 ± 0.74 1.58 ± 0.90 

22:2 NMI1 4.97 ± 1.27 3.99 ± 0.80 4.99 ± 0.76 4.62 ± 0.93 5.22 ± 1.59 5.31 ± 0.78 2.94 ± 1.21 6.42 ± 1.28 7.21 ± 0.69 6.58 ± 0.94 6.17 ± 1.23 6.05 ± 2.39 3.76 ± 1.99 

22:2 NMI2 0.91 ± 0.57 1.72 ± 0.39 1.31 ± 1.00 1.00 ± 0.18 0.79 ± 1.13 1.36 ± 0.55 2.01 ± 1.35 0.98 ± 0.68 1.99 ± 1.45 3.26 ± 2.17 0.35 ± 0.42 1.44 ± 0.41 2.46 ± 0.86 

22:3 NMI 1.87 ± 0.30 1.36 ± 0.20 1.75 ± 0.34 1.71 ± 0.11 1.41 ± 0.14 1.52 ± 0.36 0.44 ± 0.71 1.46 ± 0.37 1.53 ± 0.16 1.33 ± 0.27 1.48 ± 0.19 1.11 ± 0.24 0.75 ± 0.49 

22:4w6 0.72 ± 0.10 0.51 ± 0.11 0.36 ± 0.08 0.72 ± 0.27 0.40 ± 0.32 1.34 ± 0.43 0.31 ± 0.36 1.73 ± 0.39 1.51 ± 0.36 2.09 ± 0.33 2.54 ± 0.58 1.79 ± 0.54 1.29 ± 0.83 

22:5w6 0.23 ± 0.18 0.08 ± 0.12 0.14 ± 0.16 0.24 ± 0.12 0.15 ± 0.12 1.26 ± 0.16 0.64 ± 0.41 1.06 ± 0.21 1.31 ± 0.21 1.11 ± 0.18 1.59 ± 0.32 1.52 ± 0.26 1.14 ± 0.62 

22:5w3 2.00 ± 0.15 1.30 ± 0.17 1.60 ± 0.25 1.68 ± 0.15 1.95 ± 0.12 2.00 ± 0.31 1.06 ± 0.69 2.46 ± 0.63 3.21 ± 0.86 2.28 ± 0.64 2.43 ± 0.95 1.11 ± 0.05 1.22 ± 0.52 

22:6w3 20.67 ± 2.04 20.42 ± 2.57 22.65 ± 2.42 15.16 ± 1.30 13.46 ± 1.56 16.89 ± 3.30 9.71 ± 5.32 14.58 ± 2.43 13.88 ± 2.15 10.21 ± 2.75 12.66 ± 1.92 9.72 ± 1.26 7.05 ± 4.17 

BAME 5.20 ± 0.58 5.42 ± 0.49 4.56 ± 0.36 4.06 ± 0.25 4.70 ± 1.65 5.59 ± 0.78 7.81 ± 2.07 4.78 ± 1.14 3.75 ± 0.75 5.25 ± 1.29 3.53 ± 0.29 4.30 ± 0.75 5.94 ± 1.89 

Σ20 NMI 7.44 ± 0.87 5.99 ± 0.60 6.98 ± 0.56 7.44 ± 1.76 5.51 ± 0.82 4.86 ± 0.51 3.55 ± 0.76 5.66 ± 0.86 4.55 ± 0.46 4.71 ± 0.59 5.22 ± 0.95 6.20 ± 1.57 3.51 ± 0.69 

Σ22 NMI 7.75 ± 0.71 7.08 ± 0.46 8.04 ± 0.70 7.33 ± 0.41 7.42 ± 0.95 8.18 ± 0.57 5.39 ± 1.09 8.86 ± 0.78 10.73 ± 0.77 11.16 ± 1.12 8.00 ± 0.61 8.60 ± 1.01 6.97 ± 1.11 

ΣSFA 24.73 ± 1.72 31.74 ± 2.70 26.22 ± 1.71 24.77 ± 0.95 28.26 ± 2.54 30.68 ± 3.50 46.35 ± 7.74 28.11 ± 3.95 26.75 ± 2.94 31.39 ± 4.55 25.17 ± 1.47 28.28 ± 4.43 40.05 ± 9.03 

ΣMUFA 11.90 ± 0.94 12.94 ± 1.34 12.04 ± 1.21 13.75 ± 2.49 14.67 ± 1.41 12.24 ± 1.19 16.67 ± 1.85 14.11 ± 1.21 14.81 ± 0.88 16.74 ± 1.35 14.79 ± 1.07 18.28 ± 3.15 21.21 ± 3.14 

ΣPUFA 58.17 ± 3.46 49.90 ± 3.52 57.17 ± 3.36 57.42 ± 4.45 52.37 ± 4.82 51.49 ± 4.08 29.17 ± 6.55 52.99 ± 5.03 54.69 ± 3.51 46.63 ± 4.69 56.51 ± 3.82 49.14 ± 5.08 32.80 ± 6.05 
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Table 5.4 Total fatty acid composition of the barnacle C. dentatus on the west, south and east coasts. The values are percentage expressed as mean standard ± deviation. Only FA contributing 
> 1 % are displayed.  

Fatty acids west coast south coast east coast 

  Site 1 Site 2  Site 3  Site 4  Site 5  Site 6  Site 7  Site 8  Site 9 Site 10 Site 11  Site 12  Site 13  

  Groenrivier Doring Bay Lambert's Bay Cape Columbine Bloubergstrand Jongensfontein Brenton on Sea St. Francis Bay Port Alfred Kidd's beach Mbotyi  Pennington Ballito   

                                            

14:0 1.45 ± 0.58 4.34 ± 1.32 3.45 ± 0.37 2.40 ± 0.41 5.95 ± 0.91 2.60 ± 0.85 3.10 ± 0.64 2.93 ± 0.53 4.48 ± 1.24 4.38 ± 0.60 3.86 ± 0.78 4.44 ± 0.84 3.25 ± 0.50 

16:0 23.62 ± 4.73 28.91 ± 7.51 19.74 ± 2.00 16.38 ± 0.95 19.63 ± 2.30 26.13 ± 5.22 25.40 ± 4.24 35.87 ± 7.56 24.07 ± 6.33 21.05 ± 0.86 24.94 ± 3.33 41.92 ± 3.86 28.55 ± 2.52 

16:1w7 4.03 ± 0.59 5.74 ± 1.01 5.94 ± 0.36 3.58 ± 0.40 6.21 ± 1.12 2.52 ± 0.62 2.43 ± 0.33 2.01 ± 0.56 4.45 ± 1.35 5.25 ± 0.55 4.86 ± 0.39 3.06 ± 1.63 3.80 ± 0.46 

18:0 3.40 ± 0.94 2.98 ± 0.78 2.01 ± 0.38 3.48 ± 0.21 3.81 ± 0.64 15.84 ± 3.88 12.33 ± 3.57 23.94 ± 5.30 9.29 ± 3.28 9.12 ± 0.63 12.30 ± 2.54 21.01 ± 5.95 15.36 ± 2.33 

18:1w9 6.98 ± 0.45 5.08 ± 0.58 4.93 ± 1.18 8.97 ± 1.22 8.60 ± 0.58 6.42 ± 0.40 5.14 ± 0.31 4.12 ± 1.78 5.12 ± 0.96 6.27 ± 0.28 6.51 ± 0.79 3.35 ± 1.60 5.63 ± 0.56 

18:1w7 5.23 ± 0.84 4.82 ± 0.91 3.92 ± 0.57 5.44 ± 1.00 5.48 ± 1.10 3.33 ± 0.23 2.51 ± 0.22 2.74 ± 1.28 2.45 ± 0.96 3.02 ± 0.32 3.20 ± 0.44 3.04 ± 1.69 2.99 ± 0.72 

18:2w6 3.97 ± 0.98 1.11 ± 0.21 1.55 ± 0.14 2.43 ± 0.25 0.95 ± 0.07 1.12 ± 0.33 1.26 ± 0.17 0.64 ± 0.30 0.76 ± 0.26 0.95 ± 0.04 1.16 ± 0.36 0.81 ± 0.52 1.30 ± 0.25 

18:3w3 2.99 ± 0.92 0.39 ± 0.35 0.30 ± 0.03 1.89 ± 0.26 0.42 ± 0.08 0.47 ± 0.22 0.61 ± 0.13 0.26 ± 0.24 0.58 ± 0.18 0.60 ± 0.06 0.90 ± 0.48 0.44 ± 0.30 0.84 ± 0.21 

18:4w3 7.23 ± 3.15 4.37 ± 2.07 6.93 ± 0.67 5.06 ± 1.19 1.77 ± 0.29 0.48 ± 0.30 0.93 ± 0.60 0.32 ± 0.35 1.29 ± 0.58 1.00 ± 0.17 1.22 ± 0.56 1.14 ± 0.89 0.80 ± 0.21 

20:1w11 1.29 ± 0.15 1.40 ± 0.13 1.37 ± 0.53 3.03 ± 0.53 2.09 ± 0.56 0.52 ± 0.45 0.54 ± 0.36 0.86 ± 0.60 0.64 ± 0.19 0.87 ± 0.25 1.18 ± 0.26 0.72 ± 0.24 0.53 ± 0.26 

20:1w9 0.74 ± 0.08 0.97 ± 0.22 0.83 ± 0.04 1.28 ± 0.05 1.04 ± 0.12 0.64 ± 0.17 0.76 ± 0.32 0.60 ± 0.23 0.50 ± 0.29 0.52 ± 0.05 0.46 ± 0.06 0.52 ± 0.20 0.54 ± 0.17 

20:5w3 16.23 ± 2.75 11.31 ± 3.17 14.20 ± 0.92 22.23 ± 0.94 25.32 ± 2.12 12.99 ± 4.24 12.39 ± 2.49 6.69 ± 5.17 15.82 ± 6.55 20.73 ± 0.56 15.02 ± 4.10 4.58 ± 2.94 12.62 ± 1.50 

22:0 0.29 ± 0.15 0.33 ± 0.12 0.18 ± 0.08 0.22 ± 0.05 0.22 ± 0.10 2.04 ± 0.41 1.72 ± 0.48 2.77 ± 0.36 1.25 ± 0.75 0.92 ± 0.05 1.25 ± 0.43 1.93 ± 0.76 1.75 ± 0.38 

22:5w3 0.09 ± 0.10 0.13 ± 0.31 0.04 ± 0.09 0.73 ± 0.06 0.42 ± 0.07 0.79 ± 0.58 0.40 ± 0.21 0.30 ± 0.34 1.12 ± 0.63 1.75 ± 0.13 1.43 ± 0.38 0.43 ± 0.36 0.83 ± 0.13 

22:6w3 20.29 ± 2.05 24.03 ± 4.75 30.63 ± 1.25 19.91 ± 1.04 13.80 ± 1.86 19.19 ± 5.86 21.59 ± 6.10 9.19 ± 5.59 17.63 ± 5.40 20.38 ± 1.81 16.93 ± 4.53 5.94 ± 2.09 16.31 ± 3.11 

BAME 2.16 ± 0.49 3.92 ± 1.27 3.95 ± 0.21 2.13 ± 0.16 2.11 ± 0.24 4.88 ± 0.79 8.81 ± 1.13 6.75 ± 1.08 9.91 ± 4.25 2.93 ± 0.22 4.25 ± 1.55 6.58 ± 0.36 4.71 ± 0.70 

ΣSFA 30.92 ± 4.88 40.47 ± 7.76 29.33 ± 2.08 24.61 ± 1.07 31.71 ± 2.56 51.48 ± 6.62 51.36 ± 5.71 72.27 ± 9.32 49.01 ± 8.43 38.40 ± 1.25 46.61 ± 4.55 75.89 ± 7.19 53.63 ± 3.56 

ΣMUFA 18.27 ± 1.14 18.02 ± 1.50 16.98 ± 1.46 22.30 ± 1.71 23.42 ± 1.77 13.42 ± 0.92 11.38 ± 0.70 10.34 ± 2.35 13.17 ± 1.94 15.93 ± 0.75 16.21 ± 1.02 10.69 ± 2.86 13.49 ± 1.06 

ΣPUFA 50.81 ± 4.85 41.33 ± 6.11 53.65 ± 1.70 52.25 ± 1.91 42.68 ± 2.86 35.03 ± 7.27 37.17 ± 6.62 17.39 ± 7.64 37.20 ± 8.57 45.41 ± 1.91 36.66 ± 6.19 13.33 ± 3.78 32.70 ± 3.48 
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Fig 5.5 Canonical Analysis of Principal coordinates (CAP) of TFA composition of (a) mussels (circle) and (c) 
barnacles (triangle) in the three biogeographic provinces: west, east, south coast. δ values indicate the 
canonical correlation of each axis. (b) and (d), vectors for mussels and barnacles respectively, illustrating 
the Pearson correlations > 0.3 of the FA with the axes of the CAP, with the circle overlay scaled to the 
maximum correlation value and indicating the magnitude of effect. 

 

PERMANOVA and CAP revealed significant differences in the signatures of both filter 

feeders among the biogeographic provinces (p < 0.01; Fig 5.5). For both taxa, the 

differences were mainly due to 16:1w7, 16:4w1, 18-MUFA, 18:4w3, 20:5w3 (EPA) and 
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22:6w3 (DHA), which were more abundant on the west coast; while 18:0, 18:3w3, 

20:1w7, 20:4w6, 22:4w6 and 22:5w6 were predominant on the other two coasts (CAP; 

Fig 5.5, b and d; Table 5.3 and 5.4). In addition, mussels had higher levels of 22: NMI on 

the west coast (Table 5.3). Axis two of each of the two CAP highlighted dissimilarities 

between the south and east coasts. For mussels, the south coast was characterized by 

the FA 20 NMI, 22 NMI and 22:5w3, while the east coast had a higher proportion of 

16:1w7, 18:1w9, 18:4w3 and 20:1w11 (CAP; Fig 5.5, b; Table 5.3). Barnacles showed a 

few dissimilarities from mussels. In particular, specimens from the east coast had a high 

proportion of 14:0, 18:3w3, 20:2w6 and 20:4w6; while on the south coast 16:3w4 and 

20:3w6 were the predominant FA (CAP; Fig 5.5, d; Table 5.4). 

 

Table 5.5 PERMANOVA results on the fatty acid composition of mussels and barnacles under upwelling 

and non-upwelling conditions on the South African west and south coasts. Up = Upwelling, Si = Site; df = 

degrees of freedom, MS = mean square, * p, 0.05; ** p, 0.01; *** p, 0.001 

west coast  df MS F   

Mussels Up  1 194.83 8.54 *** 

  Si (Up) 2 124.57 5.46 *** 

Barnacles  Up  1 549.24 23.36 *** 

  Site (Up) 2 375.54 15.97 *** 

south coast  df MS F   

Mussels Up  1 160.05 2.91   

  Si (Up) 2 463.76 8.44 ** 

Barnacles  Up  1 166.52 2.97   

  Si (Up) 2 651.34 11.62 ** 

 
 

5.3.2.2. Upwelling effect 

Replicates of locations from the same sites were grouped together (hence n = 6 

for each site) in this analysis as no FA differences were found between locations at the 

same site (PERMANOVA, p < 0.001). 
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Fig 5.6 CAP of the TFA composition of mussels (a, circle) and barnacles (c, triangle) on the west coast at 
upwelling (black) and non-upwelling (grey) sites. The open symbols refer to samples from region A (sites 
1 and 2), while the closed symbols refer to region B (sites 4 and 5). (b) and (d) vectors illustrating the 
Pearson correlations > 0.3 of the FA with the axes of the CAP, with the circle overlay scaled to the 
maximum correlation value and indicating the magnitude of effect. 

 

Mussels and barnacles showed similar responses to upwelling on the west coast 

(Table 5.5), with organisms from upwelling areas being enriched in PUFA such as 18:2w6, 



 Chapter 5- biogeography and upwelling 

85 
 

18:3w3, 20:2 NMI, 20:4w6 and 22:5w6, while those from non-upwelling areas having 

higher values of BAME, 14:0, 16:0, 16:1w7, 18:0 or 20:1w11 (Fig 5.6, b and d). In 

contrast, no effect of upwelling was detected on the FA composition of the south coast 

samples (Table 5.5; CAP not shown).  

Significant differences among sites were found for both species (PERMANOVA, p 

< 0.01). CAP showed differences among samples from sites exposed to either upwelling 

or non-upwelling conditions on the west coast for both species (Fig 5.6). Specifically, 

sites 2 and 5 (non-upwelling) for mussels and barnacles and sites 1 and 4 (upwelling) for 

barnacles only, were statistically different from one another (PERMANOVA, p < 0.001). 

The FA responsible for the dissimilarities between upwelling areas for barnacles were 

16:4w1, 20:5w3, 22:5w3, 20:1w11 and 18:1w9 that had high values at site 4, while at 

site 1, 18:2w6, 18:3w3, 18:4w3 and 22:6w3 were predominant (CAP; Fig 5.6 d; Table 

5.4). For both species, site 2 had a higher proportion of BAME, 16:0, 18:0, 22:0 and 

22:6w3 compared to site 5. In addition, mussels had high values of 22:2NMI2 at this site. 

Site 5 was characterized by 20:1w11, 20:5w3 and 22:5w3 (CAP; Fig 5.6 b and d; Table 

5.3 and 5.4). On the south coast, post-hoc pair wise tests revealed differences among 

sites for both species, however no clear pattern was found (PERMANOVA p < 0.01; data 

not shown).  

 

5.3.2.3. Region effect 

At the local scale, no significant differences were found in the FA signatures of 

samples from different locations at the same site (PERMANOVA, p > 0.05). PERMANOVA, 

however, revealed intra-province differences on the west coast between regions A (Sites 

1 and 2) and B (Sites 4 and 5) for both species (p < 0.001). Mussels were characterized 

by 16:0, 18:0, BAME, 20:1w9, 22:2NMI2 and 22:6w3 FA in region A, and by 18:1w7, 

20:1w7, 20:5w3, 22:2NMI1 and 22:5w3 FA in region B. Barnacle samples from region A 

had high values of 16:0, 18:2w6, 18:3w3, 22:0 and 22:6w3; while in region B, 16:4w1, 

18:0, 18:1w9, 20:1w9, 20:1w11, 20:5w3, and 22:5w3 were predominant (Fig 5.6 d). No 

intra-province effects were found for either species on the south coast (PERMANOVA, p 

> 0.05). 
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5.4. Discussion 

SI and FA signatures of mussels and barnacles showed very distinct patterns in 

response to both biogeography and upwelling. Among the three South African 

biogeographic provinces, δ15N of both species decreased along a geographical gradient 

from north to south along the east coast, it increased from east to west along the south 

coast and remained roughly constant along the west coast, where δ15N signatures were 

more depleted than on the other two coasts. δ13C values also differed among the 

biogeographic provinces, with mussels and barnacles showing the same pattern. δ13C 

was enriched from north-east to south-west along the east and south coasts and 

samples from the west coast were more enriched in δ13C than the other two coasts. This 

is in accord with results from a previous study which found a gradient of δ13C and δ15N 

signatures of the SPM and intertidal benthic organisms along the South African coast 

(Hill and McQuaid 2006). The strong spatial pattern in SI signatures of benthic primary 

consumers observed in the present study between the two coasts (i.e. south and east 

coast versus west coast) is likely to reflect the effects of the Benguela Current on the 

west coast and the Agulhas Current on the other two coasts. The presence of the cold, 

nutrient-rich Benguela Current on the west coast promotes high primary production 

dominated by phytoplankton, in particular diatoms and kelp (Andrews and Hutchings 

1980, Emanuel et al. 1992, Pitcher et al. 1992, Shannon and Nelson 1996). While on the 

south and east coasts, the Agulhas Current brings oligotrophic warm water with low 

primary producer concentrations in coastal areas, and the coastal ecosystem has to 

mainly rely on remineralized nutrients (Miyake and Wada 1967). Thus, it is hypothesised 

that the enrichment of δ15N in benthic filter feeders from north-east to south-west 

reflects an isotopic gradient from oligotrophic to more eutrophic conditions, as 

described by Saino & Hattori (1980) and Minagawa & Wada (1984). The differences in 

isotopic signatures of the species considered in this study are probably a result of the 

dependence of primary producers on recycled nitrogen in oligotrophic waters, which are 

depleted in δ15N compared to eutrophic systems (Miyake and Wada 1967). FA 

signatures of filter feeders on the west coast were enriched in w-3 PUFA, while the south 

and east coasts had high values of w-6 PUFA. High levels of w-3 PUFA are indicative of 

microalgae, while macroalgae are w-6 PUFA enriched (Dalsgaard et al. 2003). This 

suggests a greater dependence on upwelling-supported phytoplankton blooms on the 
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west coast and a stronger dependence on macroalgal detritus on the south and east 

coasts, as previously showed by Hill and McQuaid (2006). The high levels of NMI FA in 

the mussels collected on the west coast also support this hypothesis as these FA are 

synthesized de novo by bivalves via elongation and Δ5 desaturation of 18:1n-9 and 

16:1n-7, which are both very abundant in phytoplankton (prymnesiophyta and diatoms) 

and in heterotroph organisms such as ciliates (Zhukova 1991, Dalsgaard et al. 2003, 

Peters et al. 2006). The Benguela Current is a highly productive system with nitrate 

concentrations between 5 - 8 mg L-1 (Payne and Crawford 1989, Basterretxea and 

Arístegui 2000) and an annual mean chlorophyll a concentration of  2.15 mg m-3 (Brown 

et al. 1991). In contrast, the south and east coasts are characterized by the nutrient-

depleted Agulhas Current (nitrate concentration < 0.62 mg L-1 and an annual mean 

chlorophyll a concentration of 1.48 mg m-3; Probyn et al. 1994, Machu et al. 2005), 

resulting in lower rates of primary production offshore and in the intertidal zone 

compared to the west coast (Schleyer 1981, Shannon 1989, Bustamante et al. 1995). In 

addition, the two coasts are dominated by different macroalgae compositions. For 

examples the west coast is characterized by extensive forests of the kelp Ecklonia 

maxima and Laminaria pallida (Velimirov 1980, Bustamante et al. 1995), while the south 

and east coasts are typified by seaweeds, such as rhodophytes and coralline algae 

(Bustamante et al. 1995, Griffiths and Branch 1997, Bolton et al. 2004). As a result, the 

three biogeographic provinces are characterized by different primary producer’ 

composition, which appears to be mirrored in the FA composition of the mussels and 

barnacles studied. Indeed, a high proportion of phytoplankton trophic markers were 

found in the samples from the west coast, and high macroalgal detritus markers in the 

south and east coasts samples. However, surprisingly the result of the present study did 

not indicate an influence of kelp detritus on specimens’ diet on the west coast despite 

the presence of extensive kelp forests. 

According to chapter 2, P. perna and M. galloprovincialis have different FA 

composition. Therefore, the differences in mussel FA signatures between the west and 

south-east coasts can also partly be due to a difference between species, and not solely 

due to the effects of biogeography. However, C. dentatus also showed strong separation 

between the two coasts, exhibiting a similar pattern to mussels. This suggests that 
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probably all filter feeders are strongly influenced by the biogeography of the coast of 

South Africa, which seemed to be the main driver of variability in this study. 

Upwelling had a profound effect on the SI and FA signatures of the studied 

species. Carbon signatures were significantly depleted at upwelling sites for all three 

species on both the west and the south coasts, with values lying between those for filter 

feeders at non-upwelling sites (from -15.5 to -18 ‰) and offshore phytoplankton (from 

-20 to -22 ‰; Hill and McQuaid 2006). δ13C is an indicator of food source and as such, 

the results of the present study indicate that these benthic filter feeders fed on a food 

source depleted in the heavy carbon isotope. Previous SI studies indicated the 

dependence of intertidal organisms on macroalgal detritus for food (Bustamante and 

Branch 1996a, Hill and McQuaid 2006), and showed that the δ13C of SPM displays 

significant depletion when moving from the near to the offshore environments (Hill et 

al. 2008). In addition, other studies showed that upwelling enhances nutrient levels, and 

thus stimulates phytoplankton and onshore macrophyte growth (Nielsen and Navarrete 

2004, Wieters 2005). These considerations and the depleted δ13C signatures of 

specimens at upwelling sites compared to non-upwelling sites suggest that benthic filter 

feeders at upwelling areas consumed a mix of coastal macroalgal detritus and 

phytoplankton brought onshore during downwelling events.  

On the west coast, the δ15N signatures of mussels and barnacles were not 

significantly different between upwelling and non-upwelling sites, indicating that the 

trophic level of these two filter feeders was not affected by the influence of upwelling. 

On the south coast, specimens from the upwelling sites in region A for barnacles and 

region B for mussels had enriched δ15N compared to the non-upwelling sites; in addition, 

there was an enrichment of δ15N from region B (sites 9 and 10) to region A (sites 7 and 

8). This enrichment of δ15N could be due to the geographic location of the sites. The 

results for biogeographic effects indicated a gradient of increasing δ15N from south-east 

to south-west, probably due to the proximity of the Agulhas Current to the coastline, as 

described. The same explanation could be applied in the present case, in which the 

apparent increase in δ15N at the upwelling influenced site 7 for barnacles and site 9 for 

mussels, and from region A to region B on the south coast could be an artefact of this 

geographic gradient. 
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FA analyses confirmed the SI results for the west coast, but did not show any 

effect of upwelling on the south coast for either mussels or barnacles. Upwelling 

intensity and frequency differ markedly between the west and south coasts. On the west 

coast, the Benguela Current is a highly productive system with strong upwelling events 

along the coast (Shannon et al. 1983, Shannon and Nelson 1996), while the south coast 

generally tends to experience more ephemeral, localised  upwelling events (Lutjeharms 

et al. 2000). Samples from upwelling sites on the west coast showed higher percentages 

of PUFA such as 18:3w3, 18:2w6, 20:5w3, 22:5w3 or 22:5w6 compared to non-upwelling 

sites, which had high values of MUFA and SFA, for example 14:0, 16:0, 20:1w11 and 

16:1w7. High levels of PUFA are usually associated with highly productive systems and 

are an indication of good food quality (Brett and Müller-Navarra 1997, Müller-Navarra 

et al. 2000, Dalsgaard et al. 2003). PUFA are also required during growth due to their 

essential role in membrane structure and activity (Wacker and von Elert 2001, Alkanani 

et al. 2007). Hence, the present results suggest that filter feeders experience better 

quality food at upwelling sites compared to non-upwelling sites. A few studies have 

highlighted the positive effects of upwelling on food for benthic populations. For 

instance Corbisier et al. (2014)  in an investigation of demersal populations off Cabo Frio 

in Brazil showed that consumers were heavily dependent on the organic matter 

produced and deposited during the downwelling following strong upwelling events. It is 

not possible to completely exclude the potential impact of water temperature on the 

PUFA composition of these organisms as many studies have highlighted an increase of 

PUFA associated with the maintenance of membrane fluidity in cold environments 

(Tooke and Holland 1985, Hall et al. 2002). 

Both SI and FA analyses highlighted differences between sites of upwelling within 

the same coast. Site 1 (Groenrivier, region A) was characterized by more depletion of 

δ13C and dinoflagellate trophic markers (i.e. 18:4w3, 22:6w3) than site 4 (Cape 

Columbine, region B), which had high levels of diatom FA such as 16:1w7, 20:5w3. Along 

the south coast, differences between upwelling sites were identified only in the SI 

analysis, with δ13C being more depleted at site 9 (Port Alfred, region A) than site 7 

(Brenton on Sea, region B). Site 1 (Groenrivier) and site 9 (Port Alfred) are centres of 

either continuous or frequent upwelling, whereas site 4 (Cape Columbine) experiences 

seasonal events of upwelling, mostly during summer season and finally upwelling is 
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sporadic and ephemeral at site 7 (Velimirov 1980, Newell 1982, Schumann et al. 1982, 

Lutjeharms et al. 2000). The different frequencies and intensities of upwelling events 

will result in different inputs of nutrients, with consequences for the food available to 

benthic organisms. Cole and McQuaid (2010) also found variability in the abundances 

and species composition of organisms associated with mussel beds in different areas 

within the same biogeographic province of South Africa. Smith et al. (2009) in a study 

conducted in two biogeographic provinces of California, showed how recruitment and 

growth can differ considerably within the same province. These studies and the present 

findings highlight the concept that sites of upwelling are not equal to each other in term 

of intensity and frequency of the event and that this is reflected in the diets of benthic 

populations. Consequently, the different FA and SI signatures of specimens in the 

present study could also be due to dissimilar characteristics of upwelling depending on 

the biogeographic province considered. 

Apart from the obvious effects of upwelling and biogeography described, there 

were differences among sites on the south and east coasts and between non-upwelling 

sites on the west coast. The south and east coasts are broadly characterized by the same 

oceanographic regimes, although the influence of the Agulhas Current weakens towards 

the south-west. However others factors (e.g. urbanization, bays) can also influence the 

food available for benthic organisms which would explain the differences between sites 

within a same oceanographic regime (Probyn et al. 1994, Hooper et al. 2005, Bode et al. 

2014). 

The present results also illustrated differences in primary consumer trophic 

markers, which probably mirror differences of food at local smaller scales. Dissimilarities 

were observed in δ13C and δ15N signatures between locations at the same sites, 

particularly for mussels. Such scales of variability can be attributed to a wide range of 

processes. McQuaid and Mostert (2010) experimentally manipulated water flow at 

centimetre scales around mussel beds, which altered growth rates, while Kon et al. 

(2007) observed that the diet of bivalves in an Australian mangrove forest changed 

according to the microhabitat (tidal creek, mangrove forest, mangrove forest gap) 

inhabited. Schall et al. (2011a) also suggested that processes happening at the 

microhabitat level, such as bacterial degradation of macroalgae, can change the food 

available for intertidal consumers that are living only centimetres apart. These 



 Chapter 5- biogeography and upwelling 

91 
 

observations, including the results from this study, are consistent with Levin (1992) who 

highlighted the importance of planning experiments and studies to take into account 

ecological processes that occur at different spatial scales.  

Mussels and barnacles had different SI and FA signatures, but showed the same 

patterns in relation to biogeography and upwelling. In the present study, all samples 

were collected from shores with similar wave action. Furthermore, both mussels and 

barnacles are non-selective filter feeders, so that the differences in their trophic 

signatures are driven by other mechanisms such as their size or feeding mechanisms 

(Griffiths and King 1979). The size of filter feeders often determines the size of prey they 

can ingest and in the present study the specimens of mussels ranged from 4 to 8 cm, 

while barnacles reached a maximum size of 2 cm which can lead to different prey being 

ingested (Rubenstein and Koehl 1977). In addition, C. dentatus is a passive feeder, 

whereas mussels are active feeders (Branch et al. 2007). The last factor that can explain 

some of the differences amongst species is their FA pathways which are controlled 

genetically (Napolitano 1999) and as such would be different from one taxa to the other. 

The combined effect of these aspects can hence contribute to explain the differences 

observed in their SI FA signatures. 

The present study highlights the importance of the linkage between 

oceanographic processes acting at different spatial scales on the diet of primary 

consumers. Biogeographic regions and upwelling have an impact of the diet of the 

benthic filter feeders studied. The biogeography factor is the most important while 

upwelling events are nested within the biogeographic effect and have a different impact 

depending on their frequency and intensity. This highlights that, for both filter feeders, 

the importance of the processes influencing diet depends on the spatial scale 

considered. 
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6. Spatio-temporal effects on the fatty acid composition of benthic 

filter feeders in the Benguela Current ecosystem 

6.1. Introduction 

Temporal and spatial variations in mesoscale nearshore oceanographic 

conditions play an important role in the distribution of primary production (Wieters 

2005, Blanchette et al. 2006), resulting in differences in the availability of resources for 

intertidal consumers (Menge et al. 1997, McQuaid and Payne 1998). One such feature 

is represented by upwelling events (Bosman et al. 1987, Smith et al. 2009). Changes in 

food availability can have powerful effects on the distribution and metabolism of 

intertidal organisms (Connell 1985, Raimondi 1990, Figueiras et al. 2002). For example, 

Ventura et al. (1997) showed that the reproductive peak of Astropecten 

brasiliensis coincided with the upwelling season, which enabled their larvae to benefit 

from the phytoplankton rich water; while Wieters et al. (2005) in a study conducted 

along the coast of Chile showed that turf algae grew faster at the upwelling centre 

compared to downstream of the upwelling. 

Upwelling events can change strongly in intensity and frequency over time (e.g. 

Adamec and O’Brien 1978, Lewis 1981, Picaut 1983, Field and Shillington 2006). These 

changes have far-reaching effects on coastal systems and intertidal organisms. For 

instance, Smith et al. (2009) on the California coast found that strong upwelling reduced 

mussel recruitment in coastal areas due to the export of larvae offshore, whereas when 

upwelling weakened, it was facilitated onshore larval transport and high recruitment to 

rocky intertidal habitats. Likewise, changing characteristics of upwelling can also have 

strong repercussions on coastal primary production (Pitcher et al. 1992, 1993). For 

example, Corbisier et al. (2014), in an investigation of the subtidal benthic trophic 

structure in Cabo du Frio (Brazil), showed temporal variability in the stable isotope (SI) 

signatures of consumers that reflected changes in the pattern of food distribution due 

to temporal variation in upwelling events. During an upwelling event, the phytoplankton 

composition in coastal areas changes. The advection of nutrient rich waters allows the 

proliferation of diatoms, sometimes reaching extremely high concentrations (Kiørboe et 

al. 1998). After an upwelling event, diatoms are usually replaced by dinoflagellates 

mainly due to silicon becoming limiting for diatom growth (silicon being the main 
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constituent of diatom frustules; Humborg et al. 2000, Martin-Jézéquel et al. 2000, 

Tilstone et al. 2000).  

The present study aims to examine the spatio-temporal effect of upwelling on 

the diet of benthic intertidal filter feeders. The natural seasonality of upwelling events 

on the South African west coast provides a unique opportunity to investigate the 

relationship between temporal variability in nearshore oceanographic conditions and 

food availability for benthic populations. The main hypothesis of this chapter is that the 

fatty acid composition of mussels would be characterized by diatom fatty acid trophic 

markers (FATM) at upwelling centres while this signature should decrease downstream 

of the upwelling centre. Similarly it is expected that the proportion of dinoflagellate 

biomarkers in the mussels will be higher downstream of upwelling sites (as observed by 

Allan et al. 2010) or to increase soon after an upwelling event (e.g. during the 

downwelling period). In addition, the specimens of upwelling centre are expected to be 

in better condition than in non-upwelling areas. Within this broad context, this study 

also aims to identify if mussels adopt a specific life-strategy in response to this high food 

seasonality. Indeed when food is highly variable in time, organisms usually tend to 

advantage reproduction or survival (Ricklefs 1977, Erikstad et al. 1998, Post and 

Parkinson 2001). By investigating the fatty acid (FA) composition of the adductor 

muscles and the gonads, one can infer whether the organisms are investing more energy 

in reproduction or growth, respectively. 

Small scale (from cm to a few m) differences in food availability can also be 

important for benthic populations, especially for sessile or sedentary species. For 

example, McQuaid and Mostert (2010) showed that very small (cm) scale changes in 

hydrodynamics around mussel clumps can affect their growth rates. Similarly, other 

studies showed isotopic variation among organisms only few cm apart due to microscale 

variation in food availability (Guest et al. 2004, Kon et al. 2007, Schaal et al. 2011). 

Although several studies proved that many factors affect populations from different 

heights on the shore (e.g. thermal stress. desiccation or wave action), no study has 

investigated if food availability changes over a vertical intertidal gradient, for example 

between low shore and high shore populations. 

To summarise, this work investigates the spatio-temporal variability of upwelling 

events on the FA composition of mussels in the Benguela upwe*lling system. Special 
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focus was directed towards: (1) the investigation of gonads and adductor muscles to 

determine a preferred life-strategy in response to food pulses, (2) determine if upwelling 

is favourable for mussels (i.e. condition indices), (3) how different heights habitats can 

affect mussels in upwelling conditions. FA analysis was used as represents an 

appropriate tool to investigate organisms’ diet and it can also provide information on 

food quality and life-strategy metabolism (i.e. energetic storage for growth or 

reproduction). 
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6.2. Materials and Methods 

6.2.1. Study area 

 

 
Fig 6.1 Map of the study area on the west coast of South Africa showing the sampling sites in upwelling 
(black) and non-upwelling (grey) areas. The right-hand side map illustrates an upwelling event 
(13/01/2014) with the colours bar indicating sea surface temperatures (SST). 

 
The study was conducted along the South African west coast (Fig. 1, 34.4-29.1 S° 

17.9-31.3 E). This coast is characterized by the Benguela Current, cold eutrophic waters 

with an Antarctic origin, which flow northerly. This current is associated with wind driven 

upwelling events, occurring seasonally along the study area (Andrews and Hutchings 

1980, Verheye Dua and Lucas 1988). 

 

6.2.2. Sampling sites  

Sites were identified as upwelling or non-upwelling centres following Xavier et 

al. (2007) based on in situ sea surface temperatures using temperature data logger and 

Advanced Very High Resolution Radar (AVHRR) satellite thermal imagery. Sites 1 

(Llandudno) and 3 (Paternoster) were upwelling sites and 2 (Bloubergstrand) and 4 

(Elandsbaai) were non-upwelling sites (Fig 6.1). Both upwelling sites experience seasonal 

upwelling events which are more intense during the summer months (Andrews and 

Hutchings 1980, Shannon et al. 1984, Field and Shillington 2006). Four samplings were 

conducted: two in the austral summer (10 - 11th December 2012 and 8 - 9th February 
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2013) when the upwelling events are usually predominant, and two in winter (12 - 13th 

June and 8 - 9th July 2013) during the non-upwelling season. 

 

6.2.3. Temperature data 

To characterize upwelling frequency, sea temperature was recorded in situ at 

each site during the course of this study, from December 2012 to July 2013. Four 

temperature loggers were deployed on the intertidal rocky shore at each of the four 

sampling sites. The loggers were composed of an iButton model DS 1922L Dallas Maxim, 

CA, USA (Thermochron high resolution (-40 °C to +85 °C), accuracy 0.0625°C) covered 

with Teflon and glued with two-component epoxy (Alcolin rapid-epoxy) onto grey 8.0 X 

5.5 cm, perspex plates that resembled a natural rock surface as closely as possible (Fig 

6.2). They were programmed to measure temperature every 30 min and they were 

replaced every three months due to memory limitation. The iButtons were programmed 

using the software ColdChain Thermo Dynamics. The location of each logger varied 

slightly between sites but remained within the same 20 cm tidal range. Hourly data of 

predicted tidal height at the sampling sites were provided from the website 

XTide: harmonic tide clock and tide predictor 

(http://www.flaterco.com/xtide/xtide.html). Following Harley and Helmuth (2003) the 

time of the tide’s return was assumed, based on temperature decreases/increases of 

3.0 °C over 20 min (or 2.25 °C per 15 min) during rising and falling tides. Consequently, 

this study assumed a change of ± 4.5°C over 30 min separated temperature data for 

when the data loggers were in or out of the water. 

In order to assess how the glue and the plate affected the values recorded by the 

iButton a laboratory experiment was run. In particular, five loggers attached to plates 

and five “free” (without Teflon, glue and plate) iButtons were placed in a water bath for 

24 h at a constant temperature of 20 °C. The difference between the mean values of the 

two groups was 0.25 °C (ANOVA, p < 0.01). Consequently, this value was subtracted from 

the temperature values recorded by the data loggers. 

The temperature data were used to compare temperature at sites in upwelling 

centres with their adjacent non-upwelling sites, and temperature changes within sites, 

including the calculation of the frequency of upwelling events. These were defined as a 

decline in mean daily temperature (ΔT) of ≥ 5°C (Shannon et al. 1984, Lutjeharms et al. 
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2000) and they were categorized as strong rapid cooling events. The number of 

successive days after each cooling event in which the temperature remained constant 

(ΔT ≥ 5 °C) wad also recorded. When the mean daily temperature dropped 1 - 4 °C, these 

events were defined as weaker cooling events and are also described in the results. An 

ANOVA was performed on the mean daily temperature among sites and over time in 

order to assess when upwelling events occurred. The design was composed of the 

factors: upwelling (two levels, fixed) and site (two levels, random and nested in 

upwelling). 

 

Fig 6.2 (a) Data loggers in preparation in the laboratory and (b) logger deployed on the shore. 

 

6.2.4. Sampling and sample processing 

The filter feeders chosen for this study was the mussel Mytilus galloprovincialis. 

The tissues used for the comparison were the adductor muscles and gonads. The 

adductor muscle was used due to its low turnover rates and is therefore more 

representative of a time-integrated diet (Gorokhova and Hansson 1999), while gonads 

will give insights on the reproduction strategy of the animals. The mussels were 

collected at the four sites described previously - two upwelling and two non-upwelling 

sites. In order to assess if food quality changed with height on the shore, samples were 

taken at two different heights, one in the high mussel zone and one in the low mussel 
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zone at each site. Replicates collected at each site and at each height were used to 

evaluate small-scale variability (i.e. few metres apart). 

At each height, three haphazardly selected individual mussels were collected, dissected 

and processed for further FA analyses. In addition, to assess how food quality varied 

between sites in upwelling and non-upwelling conditions and among months, three 

replicates of 5L samples of seawater were collected from the shore at each site to 

measure the suspended particulate organic matter (SPM). All water samples were 

filtered gently (< 5 cm Hg vacuum) onto pre-combusted (450°C) GF/F filters (0.7 μm pore 

size and 47 mm diameter). The specimen and SPM samples were then flash frozen in 

liquid nitrogen and transferred to a –80 °C freezer until processing. Samples were 

processed as described in Chapter 2 (Chapter 2; paragraph 2.2.1 and 2.2.2). 

 

6.2.5. Condition and gonad indices 

To understand the possible effect of upwelling on the condition of mussels, the 

condition index (CI) and the gonad index (GI) of M. galloprovincialis were measured from 

specimens at each site on each of the four sampling events. For the CI, 20 random 

replicates of mussels were collected and kept frozen at – 20 °C until processing. The soft 

tissue of mussel was dissected and dried on a piece of pre-weighed aluminium foil at 60 

°C for 48 h. The shells were dried separately. In addition, the CI was also calculated for 

the samples used for the FA analyses (an additional 3 individuals per tidal height). For 

these FA samples, the soft parts were freeze dried for 24 h. No differences in the CI were 

recorded between specimens dried with the two different methods (oven at 60°C for 24 

h vs freeze-dry; ANOVA, p > 0.05). Consequently all the replicates were pooled together 

for the CI analyses (hence n = 26 per site). The CI was calculated as a percentage of the 

dry weight of the soft tissue over the dry shell weight, following Davenport and Chen 

(1987):  

 

CI = dry soft tissue weight/ dry shell weight X 100 

 

The GI was measured only for the samples used for the FA analyses (n = 3 per 

height). The gonads were freeze dried for 24 h. The GI was calculated as a percentage of 
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the dry weight of the gonad over the dry total body weight according to Williams and 

Babcock (2005): 

 

GI = dry gonads weight/ dry total body weight X 100 

 

Gonads and adductor muscles used for the FA analyses were weighed after being freeze-

dried and frozen (– 80 °C) until processing for FA analyses. The whole body (without 

adductor muscle and gonads) was freeze-dried separately and weighed in order to 

calculate the total body weight. 

 

6.2.6. Data analysis  

6.2.6.1. Fatty acids 

To test the influence of the different factors investigated during this study, a 

mixed model design was used consisting of the factors: month (four levels, random), 

upwelling (two levels, fixed), site (two levels, random and nested in upwelling), height 

(two levels, random and nested in site) and tissue (two levels, fixed and crossed with all 

the other factors). The experimental design to analyse the FA differences of the SPM 

was composed of the factors: month (four levels, random), upwelling (two levels, fixed), 

and site (two levels, random and nested in upwelling). The FA composition of species 

under the different conditions was compared using a PERMANOVA based on a Bray-

Curtis dissimilarities matrix. Principal component analysis (PCA) and SIMPER were also 

performed as described in Chapter 2 (paragraph 2.2.3.2.).  

 

6.2.6.2. Condition Index and Gonad Index 

To test for an effect of upwelling on the CI of M. galloprovincialis, a two way 

ANOVA was performed. It comprised the factors: month (four levels, random), upwelling 

(two levels, fixed) and site (two levels, random and nested in upwelling). To assess the 

effect of season, upwelling and height on the GI of the specimens used for the FA 

analyses (n = 3 per height) a second ANOVA was performed. The experiment design was 

composed of the factors: month (four levels, random), upwelling (two levels, fixed), site 

(two levels, random and nested in upwelling) and height (two levels, random and nested 
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in site). The violation of homogeneity of variances was considered to be acceptable 

because ANOVA is relatively robust to heterogeneous variances for large designs such 

as the one in this study (Underwood 1997). 
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6.3. Results 

6.3.1. Seawater temperature 

Onshore water temperature showed pronounced variability over the study 

period and among sites (Fig 6.3). From December to February the upwelling sites 1 and 

3 (Llandudno and Paternoster) exhibited consistently colder conditions by an average of 

4.3 and 2.4 °C respectively, less than at their corresponding proximate downstream non-

upwelling sites 2 and 4 (Bloubergstrand and Elandsbaai; ANOVA, p < 0.01).  Site 1 

experienced three events of strong upwelling. The first began on the 31 of December 

and involved low temperature (10 - 12 °C) that lasted until the 13 of February (ΔT 8 °C); 

the second was recorded on the 3 of March and lasted a week (ΔT 5 °C); and the third 

occurred on the 26 and stayed until the 31 of March (ΔT 5 °C; Fig 6.3). Even though site 

2 was a non-upwelling site, rapid decreases in temperature were recorded on several 

occasions, suggesting that cold upwelled waters also influenced this site. Cooling events 

occurred: from the 31 of December to the 3 of January (ΔT 5°C) as observed at site 1; on 

the 16 for three days (ΔT 4 °C) and on the 27 of February for 10 days (ΔT 4 °C; Fig 6.3).  

Site 3 experienced six upwelling events. The first started on the 17 of December lasting 

for eight days (ΔT 6°C); the second began on the 31 of December and it finished on the 

30 of January, similar to the other upwelling site 1 (ΔT 5 °C); on the 4 - 13 and on the 16 

- 18 of February (both ΔT 5°C); the last two events started on the 28 of February and on 

the 23 of March and they stayed for nine and 10 days respectively (both ΔT 5 °C; Fig 6.3). 

Similar to the other non-upwelling site (site 2), site 4 showed also strong cooling events 

over the summer months. In particular they were recorded on the 31 of December (ΔT 

7 °C), and 16 of February (ΔT 6 °C). The first cooling event lasted for all of January, while 

the second event lasted for four days (Fig 6.3). The average temperature values at 

upwelling sites during upwelling events was 11 °C, while in the absence of upwelling the 

temperature was between 16 - 17 °C. At non-upwelling sites the temperature recorded 

during cooling events was between 11 - 15 °C for site 2 and between 12 - 15°C for site 

4, while through non-cooling events it was 15 - 20 °C and 19 - 22 °C for sites 2 and 4 

respectively (Fig 6.3). Between March and April all sites showed average temperature 

values between  11.5 - 17 °C, while  during the winter months, May to July, temperatures 

were between 13 - 15 °C at all sites. 
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Fig 6.3 Mean daily in situ sea temperatures at 2 upwelling (black symbols) and 2 non-upwelling (grey 
symbols) sites on the South African west coast derived from onshore loggers for December 2012 to July 
2013. The arrows indicate the four sampling events.  

 

6.3.2. Fatty acid composition 

6.3.2.1. Differences between tissues 

A total of 28 and 29 FA contributing to > 1 % to TFA were found in the adductor 

muscles and the gonads respectively (Table 6.1 and 6.2). The major FA found in the 

adductor muscles were 20:1w9 (3 - 6 %), 22:2NMI (4 - 5 %), 18:0 (5 - 7 %), 20:2NMI1 (5 

- 7 %), 20:5w3 (10 -13 %), 22:6w3 (12 - 20 %) and 16:0 (18-23 %; Table 6.1 and 6.2) while 
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those with highest proportion of gonad tissue were 16:1w7 (3 - 7 %), 18:0 (3 - 7 %), 

22:6w3 (10 - 26 %), 20:5w3 (12 - 27 %) and 16:0 (20 - 23 %; Table 6.2).  

 
Fig 6.4 PCA on the FA composition of gonads and adductor muscles of M. galloprovincialis collected at 
four sites on the South Africa west coast over  summer (December 2012 and February 2013) and winter 
months (June and July 2013). PC1 explained 38.5 % of the total variance and PC2 18.9%. 

 

The main difference amongst all the samples was between the two types of tissues (PCA, 

Fig 6.4), however it was difficult to explain both axes due to some overlapping samples; 

in addition it is worth noting that the “best fitting” factorial plan explained only 57.4% 

of the total variance. SIMPER analysis highlighted that the main differences between 

gonads and muscles were due to higher proportions of 16:1w7, 18:1w9, 18:4w3, 20:5w3 

and 22:6w3 in gonads; and higher proportions of 18:0, 20:2NMI1, 20:4w6 and 22:2NMI1 

in the adductor muscles; explaining 55 % of the FA differences between the two tissues.
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Table 6.1 Total fatty acid composition of adductor muscles of adult M. galloprovincialis collected during four sampling events and across four sites along the South African west coast. 
The values are percentages expressed as mean ± standard deviation (n = 6 per site). Only FA > 1 % were displayed below. PUFA = Polyunsaturated Fatty Acids, MUFA= Monounsaturated 
Fatty Acids, SFA= Saturated Fatty Acids, EFA = Essential Fatty Acids (20:4w6, 20:5w3 and 22:6w3), BAME = Bacterial Fatty acids.  

  

 14:0 0.49 + 0.14 0.60 + 0.13 0.89 + 0.63 0.56 + 0.35 1.02 + 0.40 0.91 + 0.21 0.88 + 0.37 0.44 + 0.11 0.51 + 0.12 1.22 + 0.27 0.95 + 0.49 0.57 + 0.31 1.25 + 1.91 1.04 + 0.31 0.72 + 0.58 0.45 + 0.17

 16:0 19.69 + 0.79 19.95 + 1.02 21.10 + 1.36 20.48 + 0.89 19.13 + 1.29 18.28 + 1.34 18.70 + 1.71 17.02 + 0.68 21.62 + 0.90 21.34 + 0.90 22.25 + 1.56 22.83 + 2.11 23.36 + 2.65 20.98 + 0.70 22.98 + 0.50 22.01 + 1.69

16:1w7 1.52 + 0.65 1.90 + 0.44 2.90 + 1.89 1.96 + 1.28 5.08 + 2.07 3.98 + 0.88 3.69 + 1.66 1.57 + 0.72 1.69 + 0.80 3.67 + 1.06 3.39 + 1.88 1.68 + 0.66 1.36 + 0.34 3.28 + 1.34 2.64 + 1.95 1.48 + 0.33

 18:0 7.39 + 0.70 7.80 + 0.69 6.24 + 1.38 6.31 + 0.78 5.24 + 0.60 6.14 + 0.67 5.12 + 0.81 5.17 + 0.21 6.71 + 0.96 6.15 + 0.71 5.63 + 1.41 6.47 + 1.10 7.84 + 1.20 6.46 + 0.68 6.38 + 1.88 6.92 + 1.30

18:1w9 0.98 + 0.18 0.57 + 0.11 1.44 + 0.59 1.19 + 0.39 2.13 + 0.59 1.42 + 1.31 1.62 + 0.48 1.14 + 0.16 1.85 + 0.55 0.89 + 0.07 1.67 + 0.70 1.36 + 0.19 1.30 + 0.29 0.81 + 0.21 1.61 + 0.88 1.24 + 0.20

18:1w7 2.02 + 0.30 2.02 + 0.21 1.80 + 0.45 2.13 + 0.16 3.53 + 0.85 4.24 + 1.52 2.83 + 0.55 2.87 + 0.75 2.23 + 0.19 2.38 + 0.16 1.96 + 0.22 2.06 + 0.14 2.09 + 0.24 2.59 + 0.25 1.98 + 0.15 1.97 + 0.22

18:2w6 0.90 + 0.15 0.84 + 0.15 1.07 + 0.26 0.93 + 0.07 1.17 + 0.07 1.17 + 0.22 1.24 + 0.22 1.03 + 0.17 1.09 + 0.14 1.29 + 0.18 1.08 + 0.18 1.08 + 0.22 1.00 + 0.30 1.26 + 0.18 1.11 + 0.30 1.03 + 0.26

18:4w3 0.84 + 0.31 1.17 + 0.25 0.53 + 0.29 0.50 + 0.21 1.00 + 0.40 0.89 + 0.24 1.47 + 0.80 0.58 + 0.29 0.48 + 0.22 1.21 + 0.48 1.26 + 0.63 1.06 + 0.62 0.67 + 0.39 0.84 + 0.50 1.04 + 0.75 0.82 + 0.39

20:00 0.43 + 0.33 0.17 + 0.16 0.35 + 0.36 0.51 + 0.49 0.51 + 0.25 0.40 + 0.51 0.43 + 0.20 0.37 + 0.31 0.22 + 0.18 0.33 + 0.31 0.51 + 0.31 0.29 + 0.28 0.82 + 0.75 0.69 + 0.56 0.42 + 0.20 0.80 + 1.31

20:1w11 1.04 + 0.44 1.23 + 0.24 0.91 + 0.38 1.76 + 1.30 1.02 + 0.33 1.63 + 1.28 1.63 + 0.24 1.13 + 0.67 1.18 + 0.98 2.46 + 0.68 1.76 + 0.66 1.50 + 0.36 1.84 + 1.12 1.54 + 0.91 1.56 + 1.06 1.15 + 1.12

20:1w9 5.32 + 0.44 4.43 + 0.35 4.80 + 0.96 4.72 + 1.17 4.58 + 0.77 3.89 + 0.87 2.98 + 0.39 4.10 + 0.98 5.03 + 0.81 2.38 + 0.30 3.46 + 1.30 4.03 + 0.44 4.01 + 0.71 3.43 + 1.18 3.74 + 1.20 6.00 + 1.33

20:2 NMI1 7.87 + 0.54 6.84 + 0.68 6.15 + 1.03 7.15 + 0.91 7.11 + 0.63 6.72 + 1.45 6.68 + 0.80 9.30 + 0.81 7.30 + 0.98 5.26 + 0.82 5.57 + 1.02 6.26 + 0.61 6.69 + 1.04 4.43 + 1.49 5.04 + 0.96 6.69 + 1.11

20:2 NMI2 1.17 + 0.44 1.14 + 0.18 0.92 + 0.25 1.14 + 0.44 1.06 + 0.24 1.05 + 0.36 1.62 + 1.06 2.28 + 1.11 1.27 + 0.34 1.07 + 0.14 0.85 + 0.23 1.04 + 0.19 1.33 + 0.42 1.65 + 1.63 1.42 + 1.38 0.95 + 0.23

20:4w6 5.31 + 0.38 3.40 + 0.39 3.73 + 0.90 5.15 + 0.37 4.52 + 0.59 2.31 + 0.27 2.84 + 0.56 4.74 + 0.44 7.21 + 0.96 3.42 + 0.53 3.57 + 1.11 5.56 + 1.40 5.78 + 1.27 2.93 + 1.28 3.65 + 0.88 5.52 + 0.57

20:4w3 0.01 + 0.03 0.00 + 0.00 0.15 + 0.18 0.15 + 0.18 1.45 + 0.89 2.48 + 0.78 2.26 + 1.81 4.70 + 1.01 0.02 + 0.06 0.17 + 0.07 0.15 + 0.08 0.03 + 0.09 0.06 + 0.06 0.60 + 1.22 0.09 + 0.11 0.16 + 0.27

20:5w3 11.68 + 0.93 13.84 + 1.51 12.29 + 0.53 11.35 + 1.66 12.88 + 1.40 14.77 + 2.39 11.88 + 1.61 9.23 + 0.69 11.63 + 1.74 18.09 + 2.22 12.22 + 1.75 9.33 + 1.44 9.73 + 3.27 17.65 + 2.97 12.17 + 1.62 8.88 + 1.71

 22:0 0.11 + 0.09 0.16 + 0.13 0.04 + 0.11 0.15 + 0.14 1.12 + 0.51 1.92 + 0.70 0.83 + 0.30 1.55 + 1.01 0.04 + 0.04 0.03 + 0.04 0.12 + 0.09 0.10 + 0.13 0.48 + 0.60 0.13 + 0.24 0.04 + 0.09 0.00 + 0.00

22:2w6 1.20 + 0.18 0.61 + 0.07 1.20 + 0.40 1.02 + 0.22 0.92 + 0.22 0.52 + 0.35 1.85 + 1.15 2.97 + 1.79 0.85 + 0.12 0.63 + 0.34 0.76 + 0.16 1.01 + 0.17 1.91 + 1.86 0.73 + 0.44 0.88 + 0.35 1.04 + 0.09

22:2 NMI1 5.82 + 0.37 6.89 + 0.53 4.28 + 1.00 5.02 + 0.82 4.12 + 0.37 4.81 + 0.89 3.31 + 0.56 4.33 + 0.62 4.59 + 0.76 4.61 + 1.40 3.65 + 0.69 4.49 + 0.78 4.55 + 0.32 4.22 + 1.17 3.16 + 1.00 4.52 + 0.98

22:3 NMI 1.32 + 0.04 1.16 + 0.22 1.16 + 0.28 1.31 + 0.16 1.06 + 0.09 0.97 + 0.13 1.02 + 0.23 1.25 + 0.22 1.16 + 0.20 0.81 + 0.21 1.00 + 0.12 1.19 + 0.16 1.17 + 0.24 0.79 + 0.17 0.96 + 0.22 1.14 + 0.18

22:5w6 0.53 + 0.05 0.42 + 0.06 0.29 + 0.05 0.24 + 0.05 1.03 + 0.53 1.70 + 0.57 1.33 + 0.48 2.75 + 0.70 0.39 + 0.04 0.38 + 0.03 0.27 + 0.04 0.17 + 0.14 0.47 + 0.11 0.34 + 0.15 0.31 + 0.02 0.43 + 0.41

22:5w3 2.02 + 0.13 2.29 + 0.26 1.57 + 0.18 2.22 + 0.35 1.67 + 0.17 2.03 + 0.17 1.35 + 0.10 1.72 + 0.34 1.78 + 0.15 2.08 + 0.12 1.55 + 0.23 1.87 + 0.43 1.78 + 0.42 2.36 + 0.59 1.36 + 0.09 1.77 + 0.37

22:6w3 15.92 + 0.55 16.22 + 0.71 20.74 + 2.08 17.29 + 2.05 12.67 + 1.81 12.12 + 1.23 18.95 + 1.38 12.65 + 1.28 14.46 + 1.63 14.38 + 1.34 20.11 + 2.27 18.87 + 1.10 12.83 + 3.60 15.36 + 3.59 20.07 + 2.22 17.20 + 3.26

BAME 6.42 + 0.41 6.34 + 0.55 5.45 + 0.85 6.77 + 0.41 5.97 + 0.45 5.64 + 0.46 5.48 + 0.40 7.11 + 0.31 6.70 + 0.65 5.76 + 0.50 6.26 + 1.74 7.15 + 0.75 7.66 + 1.53 5.86 + 0.84 6.68 + 2.57 7.82 + 1.98

ΣSFA 34.53 + 1.06 35.02 + 0.67 34.07 + 1.54 34.78 + 0.97 33.00 + 1.20 33.29 + 0.32 31.44 + 2.19 31.67 + 1.29 35.80 + 2.26 34.82 + 1.21 35.72 + 2.49 37.40 + 3.00 41.42 + 6.98 35.16 + 1.48 37.22 + 4.28 38.00 + 4.46

ΣMUFA 10.88 + 0.97 10.15 + 0.72 11.85 + 2.31 11.76 + 1.14 16.33 + 2.59 15.17 + 2.19 12.76 + 2.42 10.82 + 2.34 11.98 + 1.58 11.77 + 1.29 12.24 + 2.31 10.63 + 0.93 10.60 + 0.52 11.66 + 2.18 11.52 + 2.44 11.84 + 1.97

ΣPUFA 54.59 + 1.24 54.83 + 0.86 54.07 + 2.63 53.46 + 1.18 50.67 + 2.22 51.54 + 2.11 55.81 + 3.84 57.52 + 3.51 52.23 + 1.74 53.41 + 0.76 52.04 + 1.26 51.97 + 3.59 47.98 + 6.85 53.18 + 2.49 51.26 + 2.88 50.16 + 3.63

ΣEFA 32.9 + 0.66 33.5 + 1.25 36.8 + 2.60 33.8 + 2.69 30.1 + 2.16 29.2 + 3.03 33.7 + 2.34 26.6 + 1.53 33.3 + 3.01 35.9 + 2.37 35.9 + 1.39 33.8 + 2.84 28.34 + 7.87 35.94 + 4.13 35.89 + 3.99 31.6 + 3.43

1 2 3 4 3

December February June July

1 2 3 4 1 2 4 1 2 3 4
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Table 6.2 Total fatty acid composition of gonads of M. galloprovincialis collected in December, February, June and July and at the four sampling sites along the South African west 
coast. The values are percentages expressed as mean ± standard deviation (n = 6 per each site). Only FA > 1 % were displayed below. PUFA = Polyunsaturated Fatty Acids, MUFA= 
Monounsaturated Fatty Acids, SFA= Saturated Fatty Acids, EFA = Essential Fatty Acids (20:4w6, 20:5w3 and 22:6w3). 

 14:0 1.43 + 1.33 1.45 + 1.30 1.15 + 1.49 1.78 + 0.94 2.09 + 1.03 2.51 + 1.66 0.88 + 0.89 1.67 + 0.89 0.88 + 0.60 2.24 + 0.75 2.13 + 1.06 1.13 + 0.76 0.66 + 0.59 1.55 + 1.06 0.80 + 0.72 0.95 + 0.60

 16:0 21.37 + 2.65 18.21 + 2.78 23.20 + 2.45 20.89 + 0.95 20.97 + 0.81 22.17 + 1.81 20.80 + 1.67 20.69 + 1.36 18.97 + 0.98 20.49 + 0.90 23.62 + 2.19 22.13 + 1.61 17.38 + 5.12 21.77 + 1.89 21.96 + 0.81 21.08 + 1.43

16:1w7 4.52 + 4.03 5.18 + 3.29 2.95 + 3.46 6.76 + 3.45 7.83 + 3.74 7.01 + 4.01 3.70 + 3.18 6.19 + 2.72 3.90 + 2.45 6.55 + 2.49 5.99 + 2.67 3.45 + 2.40 1.95 + 1.06 5.02 + 3.12 2.65 + 2.44 3.83 + 2.65

16:1w5 0.08 + 0.10 0.10 + 0.05 0.19 + 0.19 0.20 + 0.07 0.13 + 0.04 0.13 + 0.06 0.15 + 0.14 0.19 + 0.04 0.15 + 0.07 0.26 + 0.13 0.29 + 0.09 0.28 + 0.09 0.63 + 0.86 0.14 + 0.08 0.24 + 0.10 0.33 + 0.19

16:2w4 0.37 + 0.21 0.12 + 0.08 0.21 + 0.04 0.26 + 0.12 0.35 + 0.12 0.49 + 0.30 0.24 + 0.03 0.32 + 0.18 0.08 + 0.06 0.16 + 0.22 0.21 + 0.06 0.27 + 0.12 0.29 + 0.33 0.12 + 0.09 0.20 + 0.09 0.18 + 0.12

17:1w7 0.35 + 0.55 0.13 + 0.04 0.20 + 0.34 0.17 + 0.05 0.33 + 0.36 0.13 + 0.04 0.42 + 0.64 0.16 + 0.05 0.10 + 0.05 0.13 + 0.02 0.09 + 0.04 0.10 + 0.07 0.21 + 0.24 0.10 + 0.07 0.06 + 0.05 0.10 + 0.05

16:4w1 0.14 + 0.10 0.13 + 0.09 0.15 + 0.08 0.11 + 0.04 0.11 + 0.03 0.05 + 0.03 0.14 + 0.02 0.09 + 0.04 0.16 + 0.04 0.06 + 0.03 0.12 + 0.02 0.18 + 0.07 0.22 + 0.05 0.08 + 0.04 0.12 + 0.02 0.19 + 0.12

 18:0 5.93 + 2.37 6.16 + 1.81 5.98 + 4.44 3.70 + 1.94 3.64 + 1.66 5.22 + 3.40 7.32 + 4.69 3.99 + 1.36 5.57 + 2.03 4.13 + 0.92 3.81 + 1.50 4.44 + 1.59 6.36 + 1.31 6.02 + 3.08 6.65 + 2.37 4.79 + 2.32

18:1w9 1.86 + 1.33 1.19 + 0.40 2.93 + 3.45 3.00 + 1.17 3.15 + 0.84 1.37 + 0.72 2.00 + 1.52 3.67 + 0.69 2.94 + 0.95 0.97 + 0.28 2.75 + 1.00 2.01 + 0.90 2.57 + 1.44 0.93 + 0.44 1.56 + 0.69 2.22 + 1.03

18:1w7 2.12 + 0.56 3.34 + 0.29 1.26 + 0.47 2.81 + 0.29 2.45 + 0.37 2.90 + 0.35 1.75 + 0.43 2.86 + 0.28 2.37 + 0.40 2.51 + 0.43 1.91 + 0.32 2.27 + 0.24 2.38 + 0.72 2.75 + 0.26 1.95 + 0.21 2.40 + 0.24

18:2w6 0.80 + 0.16 0.85 + 0.22 0.94 + 0.45 1.28 + 0.25 1.16 + 0.12 0.99 + 0.09 1.24 + 0.65 1.50 + 0.14 1.25 + 0.24 1.35 + 0.27 1.30 + 0.21 1.35 + 0.34 1.17 + 0.44 1.42 + 0.38 1.00 + 0.27 1.35 + 0.30

18:3w6 0.07 + 0.07 0.12 + 0.02 0.14 + 0.24 0.11 + 0.07 0.09 + 0.05 0.11 + 0.05 0.06 + 0.08 0.15 + 0.01 0.07 + 0.04 0.30 + 0.24 0.08 + 0.09 0.06 + 0.03 0.10 + 0.11 0.19 + 0.15 0.08 + 0.08 0.51 + 0.99

18:4w3 0.94 + 0.76 0.78 + 0.50 2.24 + 2.60 1.37 + 0.55 1.38 + 0.48 1.59 + 0.81 1.35 + 1.54 1.66 + 0.48 1.10 + 0.26 2.11 + 0.78 2.31 + 0.88 2.32 + 1.37 1.14 + 1.10 1.71 + 1.21 1.26 + 0.94 2.08 + 1.60

20:1w11 0.88 + 0.58 1.82 + 1.89 0.97 + 0.71 1.34 + 0.50 1.67 + 0.79 1.07 + 0.85 1.57 + 0.83 1.64 + 0.80 0.95 + 0.45 1.75 + 0.99 1.50 + 0.38 1.13 + 0.50 1.40 + 0.63 0.61 + 0.24 0.98 + 0.96 1.29 + 1.39

20:1w9 3.85 + 0.65 3.39 + 1.13 2.53 + 1.19 3.44 + 0.60 2.84 + 0.93 2.84 + 1.17 2.52 + 0.66 3.25 + 0.75 3.98 + 0.47 2.47 + 0.93 3.84 + 1.09 3.42 + 0.84 4.38 + 0.99 2.68 + 0.38 3.50 + 0.91 2.92 + 1.12

20:2 NMI1 3.11 + 1.13 4.69 + 1.56 2.53 + 1.12 4.20 + 0.49 3.67 + 0.74 2.88 + 0.47 2.94 + 1.63 4.13 + 0.67 4.08 + 1.23 3.14 + 1.43 2.53 + 0.90 3.61 + 1.03 5.10 + 1.54 2.89 + 0.44 2.34 + 0.44 3.62 + 0.66

20:2 NMI2 0.85 + 0.59 0.76 + 0.25 0.58 + 0.65 0.53 + 0.15 0.39 + 0.18 0.50 + 0.16 0.36 + 0.26 0.61 + 0.16 0.71 + 0.33 0.63 + 0.39 0.56 + 0.38 0.69 + 0.35 1.07 + 0.55 0.59 + 0.19 0.48 + 0.33 1.58 + 1.65

20:4w6 3.25 + 2.00 1.82 + 0.99 1.44 + 0.93 3.77 + 0.95 3.56 + 1.13 1.89 + 0.62 2.79 + 0.83 4.35 + 0.93 6.48 + 1.30 2.57 + 0.85 2.05 + 0.66 3.98 + 0.94 6.07 + 3.35 2.63 + 0.53 3.30 + 0.79 3.42 + 1.82

20:5w3 23.56 + 1.90 24.83 + 4.25 16.04 + 2.56 18.27 + 2.15 21.61 + 1.75 27.85 + 0.81 16.36 + 1.81 19.17 + 1.58 20.10 + 2.64 23.54 + 3.15 14.13 + 1.88 12.37 + 1.39 18.13 + 4.37 23.30 + 2.60 17.49 + 1.69 13.39 + 1.66

22:2w6 0.98 + 0.74 0.35 + 0.12 0.47 + 0.46 0.98 + 0.23 0.83 + 0.36 0.41 + 0.24 0.45 + 0.33 1.04 + 0.25 0.58 + 0.30 0.34 + 0.19 1.00 + 0.74 0.65 + 0.34 1.63 + 1.71 0.44 + 0.22 0.31 + 0.11 0.42 + 0.32

22:2 NMI1 1.99 + 0.73 2.81 + 0.78 0.91 + 0.65 2.87 + 0.43 2.43 + 0.72 2.12 + 0.81 1.81 + 1.29 2.41 + 0.71 2.30 + 1.11 2.93 + 1.47 1.68 + 0.75 2.17 + 0.88 2.24 + 1.88 2.10 + 0.57 1.22 + 0.66 2.20 + 0.65

22:5w3 2.16 + 0.53 2.29 + 0.36 1.20 + 0.35 1.84 + 0.21 1.93 + 0.17 2.29 + 0.37 1.43 + 0.09 1.96 + 0.22 1.90 + 0.20 2.00 + 0.31 1.29 + 0.22 1.39 + 0.12 1.96 + 0.23 2.16 + 0.49 1.38 + 0.08 1.61 + 0.44

22:6w3 13.31 + 3.99 14.31 + 3.88 27.59 + 5.35 14.91 + 4.68 12.48 + 3.13 9.79 + 3.71 24.94 + 2.93 12.88 + 3.48 15.84 + 2.71 14.04 + 2.74 23.29 + 4.19 25.29 + 4.23 16.21 + 1.41 15.73 + 3.64 25.77 + 3.08 23.69 + 2.81

BAME 6.08 + 2.95 5.17 + 1.12 4.21 + 1.65 5.41 + 1.04 4.91 + 1.71 3.67 + 0.80 4.76 + 1.18 5.42 + 0.76 5.53 + 0.56 5.32 + 1.31 3.48 + 1.04 5.31 + 1.00 6.76 + 1.59 5.05 + 0.66 4.71 + 0.72 5.85 + 0.89

ΣSFA 34.82 + 3.15 31.00 + 2.48 34.54 + 2.76 31.78 + 2.00 31.61 + 2.54 33.58 + 1.67 33.76 + 5.40 31.76 + 1.24 30.96 + 1.90 32.18 + 1.18 33.04 + 2.12 33.02 + 0.65 31.16 + 7.09 34.40 + 2.70 34.11 + 1.67 32.67 + 1.38

ΣMUFA 13.66 + 4.63 15.14 + 2.76 11.02 + 4.96 17.72 + 4.82 18.40 + 4.69 15.46 + 4.18 12.13 + 5.02 17.97 + 3.74 14.39 + 3.69 14.64 + 2.64 16.37 + 3.84 12.66 + 3.14 13.51 + 2.68 12.24 + 3.82 10.94 + 3.24 13.09 + 3.39

ΣPUFA 51.52 + 3.15 53.86 + 2.36 54.44 + 4.93 50.51 + 4.14 49.99 + 3.19 50.96 + 3.74 54.11 + 1.85 50.27 + 3.70 54.65 + 2.94 53.18 + 2.28 50.58 + 4.18 54.32 + 3.19 55.33 + 4.55 53.37 + 1.48 54.95 + 1.67 54.23 + 2.75

ΣEFA 40.11 + 5.12 40.96 + 2.91 45.07 + 8.36 36.95 + 4.52 37.65 + 4.06 39.54 + 4.95 41.30 + 4.74 36.39 + 3.38 42.43 + 4.32 40.16 + 1.95 39.48 + 4.78 41.63 + 4.33 40.41 + 2.60 41.66 + 3.13 46.56 + 4.36 40.49 + 4.79

FebruaryDecember JulyJune

321432143214321 4
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Fig 6.5 Percentages of Essential fatty acids (EFA; mean +̠ SD) for adductor muscle and gonad tissue of M. 

galloprovincialis at four sites (1, 2, 3 and 4) on the South African west coast and during December, 
February, June and July. EFA= 20:4w6, 20:5w3 and 22:6w3. 
 

Gonads showed a higher proportion of essential FA (EFA, i.e. 20:4w6, 20:5w3, 22:6w3, 

36 – 46 % of TFA; Alkanani et al. 2007) than muscles (26 – 35 % of TFA) at all sites and 

across all months, Fig 6.5). In particular, gonads had double the proportion of 20:5w3 

relative to adductor muscles (Table 6.1 and 6.2). Considering the strong dissimilarities 

between tissues, FA composition of gonads and adductor muscles were investigated 

separately from the other analyses. 

 

6.3.2.2. Temporal variation 

6.3.2.2.1. Adductor muscle 

FA analyses conducted on adductor muscles showed strong dissimilarities among 

months (Table 6.3). Axis one of the PCA, which explains 34 % of the total variance of the 

data set, separated the samples collected in February from all other months (Table 6.3, 

Fig 6.6). The FA responsible for this pattern were 16:1w7, 20:4w3, 20:5w3, 22:0 and 
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22:5w6, that were more abundant in February, and 16:0, 20:1w9, 20:4w6 and 22:6w3 

that characterized the other three months (PCA and SIMPER; Fig 6.6). PC2, which 

explained 20.5 % of the total variance, did not seem to highlight any clear pattern 

amongst the samples. 

 

Table 6.3 PERMANOVA results on the fatty acid composition of the adductor muscles of M. 

galloprovincialis at four sites and across four month on the South African west coast. M = Month, Up = 
Upwelling, Si = Site, He = Height; df = degrees of freedom, MS = mean square; * p, 0.05; ** p, 0.01; *** p, 

0.001. 

  
df MS Pseudo-F P  

 

   

M 3 488.66 9.57 0.003 ** 

Up 1 157.98 0.37  0.971   

Si (Up)  2 502.22 4.76 0.000 ** 

He (Si (Up)) 4 60.69 2.04 0.233  

M x Up 3 58.28 1.14  0.379    

M x Si (Up) 6 51.04 1.71 0.045  ** 

M x He (Si (Up)) 12 29.71 1.24 0.096   

Res 64 23.9            
 

 

No effect of the factors upwelling, height or any interactions were found (Table 6.3). 

However, PERMANOVA highlighted a significant effect of the factor site and the 

interaction between site and month (Table 6.3), indicating that the FA characterizing 

each sites changed with month.   
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Fig 6.6 PCA conducted on the adductor muscles of M. galloprovincialis collected at the intertidal rocky 
shore at all sites and at both heights, on the South African west coast in December, January, June and July. 
PC1 explain 34.0 % of the total variance and PC2 a further 20.5 %.  

 

For the months of December, June and July, the 2 sites of upwelling were 

different from each other (site 1 ≠ site 3) as well as the 2 sites of non-upwelling (site 2 ≠ 

site 4; PCA and PERMANOVA post hoc pair-wise test, p < 0.05). Indeed PCA and SIMPER 

underlined that site 3 exhibited a high proportion of 16:1w7 and dinoflagellate trophic 

markers (TM; 18:4w3 and 22:6w3; FA contributing to 40 % of TFA, Table 6.1) compared 

to site 1 which was characterized by bacterial FA (BAME), 20:2NMI1, 20:4w6 and 

22:2NMI1 (26 % of TFA, Table 6.1). These FA explained 55 % of the dissimilarities 

between groups (SIMPER). Site 2 was different from site 4 in having high percentages of 

20:1w11 and diatom TM (16:1w7 and 20:5w3; 32 % of TFA), while site 4 was typified by 

20:1w9, 20:4w6, 20:2NMI1 and 22:6w3 (35 % of TFA, Table 6.1; SIMPER, FA explaining 

50 % of the total variance). In February, only sites 2 and 4, the two non-upwelling sites, 

were different from each other (PERMANOVA post hoc pair-wise test and PCA). During 

this month, PCA and SIMPER showed the two sites of upwelling and site 2 had higher 

proportion of 14:0 and diatom trophic markers compared to site 4 (20 % of TFA, Table 
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6.1), which was enriched in 20:4w3, 20:2NMI1 and 22:2w6 (17 % of TFA, Table 6.1). 

These FA contributed to explain 53 % of the dissimilarities between groups. 

 

6.3.2.2.2. Gonad 

Gonad FA compositions had a high proportion of PUFA (50 - 55 % of TFA) at all 

sites and months, followed by SFA (30 - 35 %) and MUFA (10 - 15 %; Table 6.3). 

PERMANOVA showed the factors upwelling, month, height and their interactions were 

not significant; however, an effect of the factor site and its interaction with month was 

recorded, indicating that the FA composition of gonads across sites changed in the 

different months (Table 6.4).  

 

Table 6.4 PERMANOVA results on the fatty acid compositions of gonads of M. galloprovincialis at four 

sites and across for month on the South African west coast in relation to the different factors. M = Month, 

Up = Upwelling, Si = Site, He = Height; df = degrees of freedom, MS = mean square; * p, 0.05; ** p, 0.01; 

*** p, 0.001. 

  
df MS F P  

 

   

M 3 158.86 1.67  0.169  

Up 1 396.91 0.63  0.769  

Si (Up)  2 673.62 4.87  0.000 *** 

He (Si (Up)) 4 55.45 1.06  0.399   

M x Up 3 99.58 1.06  0.432  

M  x Si (Up) 6 95.03 1.83  0.043 * 

M x He (Si (Up)) 12 51.58 0.78  0.792  

Res 60 65.91            

 

The dissimilarities among sites depended on the month considered, however no clear 

pattern was recorded for any of them. PCA confirmed the PERMANOVA (Fig 6.7). PC1 

that explained the majority of the variance (45.4 %) could not separate specimens based 

on site or any other factors (Fig 6.7). PC2 separated site 1 and 2 from sites 3, while site 

4 is spread on both side of axis 2; however it only explains 17.7 % of the total variance. 
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Fig 6.7 PCA conducted on the FA composition of the gonads of M. galloprovincialis collected from 
intertidal rocky shore at four sites during the four sampling events. PC1 explain 45.4 % of the total variance 
and PC2 17.7 %. 

 

6.3.2.2.3. Food source 

PERMANOVA analyses showed a significant effect of the factor month and the 

interaction between month and site on the SPM signatures, with no effects of neither 

upwelling nor site (Table 6.5). Generally, SPM had higher proportions of SFA (40 - 60 %) 

than MUFA (20 - 45 %) and PUFA (10 - 25 %) in all months (Table 6.6). Despite the 

differences highlighted by PERMANOVA, the FA signatures of SPM changed over the 

months and across sites without a clear pattern and no similarity with the pattern seen 

for the adductor muscles. 

Table 6.5 PERMANOVA results on the fatty acid compositions of SPM at four sites and across for month 
on the South African west coast in relation to the different factors. M = Month, Up = Upwelling, Si = Site; 
df = degrees of freedom, MS = mean square; * p, 0.05; ** p, 0.01; *** p, 0.001. 

  
df MS F p  

 

   

M 3 829.38 3.06 0.001 ** 

Up 1 193.57 0.62    0.864   

Si (Up)  2 197.21 0.72    0.753   

M x Up 3 543.57 2.00 0.055  

M x Si (Up) 6 270.65 1.69 0.002 ** 

Res 32 159.92      
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Table 6.6 Total fatty acid composition of suspended particulate matter (SPM) collected during the four sampling events and across four sites along the South African west coast. The 
values are percentages expressed as mean ± standard deviation (n = 3 per site). Only FA > 1 % are displayed. PUFA = Polyunsaturated Fatty Acids, MUFA= Monounsaturated Fatty 
Acids, SFA= Saturated Fatty Acids. 

 

 14:0 5.28 + 1.22 5.93 + 0.54 3.90 + 0.34 3.89 + 1.04 3.06 + 0.13 3.28 + 1.09 3.04 + 0.07 2.75 + 1.00 3.87 + 0.89 10.50 + 0.48 7.96 + 2.50 6.84 + 0.40 4.75 + 0.89 3.34 + 0.48 2.72 + 1.14 2.89 + 0.55

14:1w5 0.99 + 0.95 1.04 + 1.12 0.29 + 0.26 0.44 + 0.36 0.21 + 0.26 0.74 + 0.82 1.53 + 0.27 0.61 + 0.23 0.18 + 0.27 0.67 + 0.20 0.53 + 0.31 0.72 + 0.33 0.45 + 0.27 0.49 + 0.20 0.21 + 0.14 0.50 + 0.25

 16:0 20.82 + 5.28 26.49 + 2.33 33.01 + 1.32 33.09 + 0.86 20.01 + 7.17 19.21 + 1.41 22.41 + 0.53 17.34 + 5.80 29.17 + 5.55 31.73 + 3.47 28.95 + 5.26 31.35 + 2.35 28.40 + 5.55 14.12 + 3.47 20.02 + 17.55 17.17 + 2.96

16:1w7 6.36 + 4.87 11.58 + 1.66 2.65 + 0.68 3.22 + 1.68 4.01 + 0.89 2.68 + 0.27 6.19 + 0.07 1.31 + 0.53 4.23 + 2.00 1.43 + 1.15 2.44 + 1.95 6.44 + 6.65 3.99 + 2.00 3.09 + 1.15 8.25 + 9.43 1.56 + 0.39

16:1w5 3.55 + 2.61 0.33 + 0.21 1.84 + 1.02 2.91 + 0.83 0.76 + 0.61 3.04 + 2.07 1.96 + 0.42 6.19 + 1.81 1.51 + 2.58 1.93 + 0.47 2.03 + 2.20 1.35 + 1.17 5.45 + 2.58 5.36 + 0.47 4.05 + 0.87 4.19 + 0.65

17:1w7 0.77 + 0.59 1.22 + 0.35 0.38 + 0.02 0.49 + 0.21 0.46 + 0.14 0.30 + 0.18 0.62 + 0.14 0.82 + 0.36 0.28 + 0.04 0.31 + 0.09 0.44 + 0.39 0.96 + 1.17 0.15 + 0.04 0.25 + 0.09 0.29 + 0.16 0.31 + 0.32

C18:0 11.36 + 3.80 8.92 + 1.26 11.22 + 1.54 9.06 + 1.46 14.43 + 7.45 9.77 + 4.85 7.08 + 0.73 7.74 + 2.24 5.98 + 3.15 12.42 + 1.51 10.68 + 3.96 14.76 + 7.56 12.50 + 3.15 8.19 + 1.51 15.01 + 5.78 7.30 + 4.11

18:1w9 9.55 + 3.35 18.78 + 8.83 20.07 + 8.26 26.32 + 4.84 18.44 + 16.74 16.87 + 4.26 22.23 + 1.57 11.11 + 4.30 18.13 + 2.50 12.26 + 1.97 10.28 + 10.11 2.82 + 2.67 12.95 + 2.50 9.66 + 1.97 10.20 + 3.03 12.24 + 4.18

18:1w7 3.31 + 2.19 1.69 + 2.07 4.28 + 4.56 0.91 + 0.22 10.44 + 10.28 2.30 + 0.69 2.27 + 2.02 3.94 + 0.61 3.08 + 1.47 3.15 + 0.22 5.22 + 2.63 2.52 + 1.68 5.29 + 1.47 4.31 + 0.22 4.36 + 0.12 9.56 + 8.02

18:1w5 0.99 + 0.58 0.76 + 0.13 0.74 + 0.34 0.57 + 0.17 0.42 + 0.21 0.24 + 0.07 0.62 + 0.02 1.99 + 1.75 1.78 + 1.75 0.07 + 1.65 1.66 + 1.01 0.57 + 0.75 3.61 + 1.75 3.79 + 1.65 3.42 + 1.12 2.78 + 1.90

18:2w6 1.34 + 0.51 2.12 + 1.28 2.35 + 1.07 2.89 + 0.77 8.12 + 4.91 5.69 + 3.34 9.60 + 0.42 2.02 + 0.54 3.26 + 1.01 2.25 + 2.76 1.73 + 1.47 0.84 + 0.69 3.74 + 1.01 9.63 + 2.76 4.40 + 3.62 22.06 + 2.83

18:4w3 1.22 + 1.05 0.91 + 1.57 0.76 + 0.48 0.82 + 0.51 0.04 + 0.08 2.87 + 1.06 2.24 + 0.71 4.99 + 2.15 3.61 + 2.75 0.77 + 0.67 0.53 + 0.68 2.22 + 0.75 2.17 + 2.75 1.99 + 0.67 2.41 + 1.84 1.08 + 0.64

 20:0 1.46 + 1.32 0.69 + 0.21 1.18 + 0.04 1.16 + 0.26 1.76 + 2.53 0.96 + 0.79 0.60 + 0.23 2.03 + 2.58 7.25 + 1.55 1.32 + 3.18 1.82 + 1.26 1.75 + 0.38 1.87 + 1.55 4.43 + 3.18 1.25 + 0.16 2.98 + 2.10

20:1w11 4.50 + 7.62 1.03 + 0.68 0.52 + 0.09 0.94 + 0.61 6.02 + 9.47 4.37 + 4.02 2.88 + 0.37 3.13 + 2.35 3.21 + 0.04 0.69 + 1.40 1.87 + 0.44 0.79 + 0.23 0.52 + 0.04 3.08 + 1.40 3.01 + 2.32 1.23 + 0.54

20:1w9 3.60 + 2.03 1.97 + 1.08 1.35 + 0.82 0.95 + 0.19 2.43 + 3.30 3.99 + 1.29 1.03 + 1.66 5.62 + 3.90 1.55 + 0.24 0.85 + 2.27 1.30 + 0.85 1.20 + 1.29 0.37 + 0.24 4.14 + 2.27 1.77 + 0.53 0.79 + 0.09

20:1w7 1.18 + 1.22 0.80 + 0.60 0.34 + 0.33 0.64 + 0.33 1.85 + 2.10 0.17 + 0.23 0.17 + 0.29 0.54 + 0.48 0.38 + 0.43 0.22 + 1.36 0.60 + 0.22 1.53 + 1.86 0.39 + 0.43 3.07 + 1.36 0.63 + 0.62 0.69 + 0.67

20:3w3 1.97 + 2.20 1.20 + 0.67 1.65 + 0.94 0.74 + 0.38 0.63 + 0.26 3.54 + 2.76 2.36 + 0.66 5.84 + 1.99 0.57 + 0.49 0.95 + 0.42 0.87 + 0.78 0.95 + 1.09 0.66 + 0.49 0.67 + 0.42 0.75 + 0.32 0.33 + 0.13

20:5w3 4.84 + 4.31 0.25 + 0.27 1.04 + 0.74 1.89 + 1.31 0.33 + 0.54 4.25 + 3.94 1.24 + 0.14 2.10 + 0.93 1.54 + 0.56 1.40 + 2.49 1.60 + 0.57 1.33 + 1.01 1.03 + 0.56 3.48 + 2.49 1.66 + 0.77 1.49 + 0.45

 22:0 0.91 + 1.18 0.50 + 0.07 0.76 + 0.40 0.42 + 0.03 0.45 + 0.26 3.41 + 2.48 0.54 + 0.06 6.00 + 1.83 1.38 + 0.10 2.12 + 0.01 3.00 + 1.96 1.00 + 0.14 0.67 + 0.10 0.48 + 0.01 0.42 + 0.15 1.25 + 1.22

22:1w9 3.80 + 2.37 2.68 + 0.52 3.14 + 1.36 1.69 + 1.19 1.35 + 0.58 4.15 + 2.43 2.51 + 0.57 1.60 + 1.38 1.96 + 2.04 4.00 + 2.56 2.86 + 1.63 2.27 + 3.28 2.40 + 2.04 4.54 + 2.56 2.92 + 1.75 2.04 + 0.73

22:2w6 2.23 + 2.98 2.27 + 3.50 0.38 + 0.66 0.66 + 0.75 0.66 + 0.48 0.61 + 0.49 0.78 + 0.14 1.17 + 0.38 0.26 + 0.11 1.14 + 0.27 1.21 + 0.67 1.86 + 2.19 0.37 + 0.11 1.02 + 0.27 0.41 + 0.11 0.29 + 0.30

22:5w3 2.26 + 2.74 1.39 + 0.81 2.03 + 1.14 1.51 + 0.83 0.85 + 0.42 3.72 + 1.25 1.91 + 0.54 4.53 + 1.27 0.95 + 0.47 1.25 + 1.30 2.92 + 1.42 2.14 + 1.83 1.30 + 0.47 1.52 + 1.30 0.71 + 0.29 0.49 + 0.20

22:6w3 2.60 + 1.67 2.14 + 2.31 2.99 + 1.04 1.29 + 0.39 0.97 + 0.81 1.70 + 1.03 1.29 + 0.23 2.89 + 1.10 1.96 + 0.57 2.48 + 1.66 3.34 + 2.30 2.64 + 2.24 1.19 + 0.57 2.62 + 1.66 2.03 + 0.74 1.19 + 0.24

BAME 5.12 + 2.83 5.31 + 0.83 3.11 + 0.70 3.51 + 1.87 2.30 + 0.69 2.15 + 1.05 4.88 + 0.24 3.76 + 1.84 3.90 + 0.68 6.10 + 2.29 6.16 + 2.56 11.14 + 7.16 5.78 + 0.68 6.72 + 2.29 9.09 + 5.60 5.60 + 1.54

ΣSFA 44.95 + 3.03 47.84 + 3.11 53.19 + 0.40 51.13 + 2.25 42.01 + 7.93 38.77 + 6.64 38.55 + 0.44 39.61 + 7.58 51.56 + 6.17 64.20 + 6.90 58.56 + 8.55 66.85 + 15.84 53.98 + 6.17 37.29 + 6.90 48.52 + 16.53 37.19 + 7.68

ΣMUFA 38.60 + 6.58 41.88 + 2.05 35.60 + 1.37 39.07 + 2.15 46.40 + 5.56 38.85 + 3.44 42.02 + 1.55 36.85 + 2.33 36.29 + 9.30 25.56 + 6.11 29.25 + 13.38 21.16 + 10.48 35.56 + 9.30 41.79 + 6.11 39.11 + 13.89 35.89 + 5.05

ΣPUFA 16.45 + 3.59 10.28 + 4.95 11.21 + 1.23 9.80 + 2.03 11.60 + 4.85 22.38 + 3.53 19.43 + 1.52 23.53 + 5.37 12.15 + 3.51 10.24 + 8.31 12.19 + 4.93 11.99 + 9.07 10.46 + 3.51 20.92 + 8.31 12.37 + 3.10 26.92 + 2.77
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6.3.3. Condition index 

Neither upwelling nor month affected the condition index of M. galloprovincialis 

(ANOVA, p > 0.05); however, there were significant differences among sites (ANOVA, p 

< 0.001). The Tukey HSD tests showed site 1 had the lowest CI over time and compared 

to the other sites (p < 0.001, Fig 6.8). Site 2 had CI values significantly intermediate 

between site 1 and sites 3-4 (p < 0.001; Fig 6.8). Sites 3 and 4 were not statistically 

different from each other and they showed the highest CI values among sites.  

 
Fig 6.8 Condition Index of M. galloprovincialis at the four sites and across the four months sampled. Sites 
are arranged from south to north (left to right) and the error bars indicate standard deviation. Site 1 and 
3 were sites of upwelling, while site 2 and 4 of non-upwelling.  

 

6.3.4. Gonad index 

  Upwelling and month did not have an effect on the GI of mussels on the South 

African west coast, however there were significant effects of the factor site and the 

interactions between month and site (Table 6.7). 
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Table 6.7 ANOVA to test the temporal effect of upwelling on the Gonad Index of M. galloprovincialis on 
the South African west coast. M = Month, Up = Upwelling, Si = Site, He = Height; df = degrees of freedom, 
MS = mean square, F = f-ratio, P = p-value. * p < 0.05; ** p < 0.01; *** p < 0.001. 

  
df MS F P  

  

T 3 184.99 2.52 0.061   

Up 1 12.41 0.17 0.682   

Si (Up) 2 2679.15 36.49 0.000 *** 

He (Si (Up)) 4 8.11 0.11 0.979   

T X Up 3 99.56 1.36 0.259   

T X Si (Up) 6 225.18 3.07 0.008 ** 

T x He (Si (Up)) 12 197.29 2.69 0.06   

Error 123 73.41       

 

As the CI, site 3 had the highest GI across all months (Fig 6.9). Sites 1 and 2 had similar 

GI and they were constant over the four months, while site 4 showed an increase of GI 

from the summer to the winter months (Tukey HSD, p < 0.05; Fig 6.9). 
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Fig 6.9 Gonad Index of the specimens of M. galloprovincialis processed with fatty acid analyses at four 

sites and across the four moths sampled. Sites are arranged from south to north (left to right) and the 

error bars indicate standard deviation. Sites 1 and 3 were sites of upwelling, while site 2 and 4 of non-

upwelling. 
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6.4. Discussion 

The present study highlights marked differences in the FA compositions of gonad 

and adductor muscle tissue of M. galloprovincialis, with gonads showing a higher 

proportion of PUFA and more specifically EFA across all months and sites. EFA are FA 

essential for the maintenance of cell membrane structure and function, and they are 

precursors of bioactive compound in invertebrates, essential for survival, growth and 

reproduction (Parrish et al. 2000, Sushchik 2008). However organisms cannot synthetize 

them in sufficient quantity (missing the desaturase enzyme Δ6; Pirini et al. 2007), and 

therefore, they have to be acquired through their diet (Arts et al. 2001, Kelly and 

Scheibling 2012). Studies have suggested preferential retention of specific FA in gonads, 

in order to ensure reproduction and to increase the chances of survival of the offspring 

(Pollero et al. 1983, Soudant et al. 1996a, 1996b, Palacios et al. 2005, Kattner and Hagen 

2009). For instance Estefanell et al. (2014) found Octopus vulgaris retains 20:4w6 in its 

gonads; Blanchard et al. (2005) showed the concentration of 18:2w6, 18:3w3 and 

22:6w3 increased in the gonads of the fish Perca fluviatilis during the reproduction 

season; while Besnard et al. (1989) highlighted that peaks of 20:5w3 in the bivalve 

Pecten maximus gonad coincide with sexual maturity, whereas 22:6w3 is essential for 

membranes before oocyte maturity. As expected, the gonads of mussels presented a 

higher proportion of EFA and in particular double the proportion of 20:5w3 compared 

to adductor muscles. This suggests a preferential retention of EFA and specifically of 

20:5w3 in gonads, most likely for reproduction purposes. The results of the GI and CI 

provide support to this hypothesis. Although the overall patterns of CI and GI among 

sites were similar throughout the year, CI at site 1 remained consistently low over time, 

while GI was variable, often having similar values to the other sites within each month. 

This may suggest that despite specimens from site 1 exhibiting poorer condition than 

those at the other sites, they still invested substantial amounts of energy in 

reproduction.  

Although gonads did not show a clear pattern over the sampling period, they 

were significantly different to the muscles during all months. At all sites considered, 

adductor muscle samples from February were separated from specimens of the other 

three months for having a higher proportion of diatom trophic markers compared to 

December, June and July. The temperature data from the present study showed most 
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upwelling events occurred between December and February. Upwelling enhances 

nutrient levels in coastal areas, stimulating phytoplankton growth mainly in the form of 

diatoms (Napolitano 1999) and would thus modify the food quality for intertidal 

consumers (see Chapter 5). Therefore, the FA signatures of adductor muscle in February 

seems to reflect the influence of upwelling events, which occurred during the previous 

months. This matches the one month FA turn-over period found for mussels (Pirini et al. 

2007). However, this effect was not detectable in gonads, which showed differences in 

FA signatures among months, but without a clear pattern. A possible explanation for the 

different pattern between tissues could be related to the different turnover rates of 

gonads and muscles with gonads changing FA signatures faster than adductor muscle 

(Napolitano et al. 1993, Ezgeta-Balić et al. 2014). Tissues, such as gonads or the digestive 

gland, which have a higher metabolic activity and a faster turnover rate, are more 

appropriate for revealing recent diet, while tissues with lower metabolic activity, such 

as muscles, have a slower turnover rate and thus provide an integration of dietary 

sources over a longer period of time (Ezgeta-Balić et al. 2014). Some studies have 

investigated the FA turnover rate in other organisms such as fish or zooplankton (e.g. 

Graeve et al. 1994, Robin et al. 2003), however, no studies have investigated the FA 

turnover rates of gonads or muscles in filter feeders. Further investigations in this regard 

are needed in order to clarify this pattern. Another hypothesis, which corroborates with 

the previous paragraph, is that there is a preferential retention of some FA in the gonads 

for reproduction purposes. A preferential FA pathway mechanism may thus explain the 

miss-match between the food quality and the FA signature of the gonads and therefore 

clarify the lack of resemblance between the gonad and the muscle pattern (Caers et al. 

1999, Blanchard et al. 2005, Uysal et al. 2006, Kebir et al. 2007). 

The factor upwelling was not significant for either gonads or muscles for any of 

the months, however strong dissimilarities among sites were recorded. In particular, 

muscles showed that diatom trophic markers characterized the non-upwelling site 2 at 

all months and site 3 was enriched in dinoflagellate trophic markers, while site 1 and 4 

had generally high proportions of PUFA, but no specific FATM were identified. Gonads 

showed some minor variations among sites and months but without a clear pattern. As 

discussed above, the faster turnover rate and different metabolic pathway of gonads 

compared to adductor muscle are probably the drivers of the dissimilarities between 
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tissues. Therefore, only the results of the more conservative tissue, the adductor 

muscle, are discussed in relation to the factor month. Adductor muscles results 

contradict with the prior expectations of the study. It was expected stronger diatom TM 

or dinoflagellate TM at upwelling sites (sites 1 and 3), which are the two main taxa 

present during upwelling events (Chavez and Messié 2009). Site 3 confirmed this 

pattern, being typified by dinoflagellate markers, but site 1 was not characterised by any 

distinct phytoplankton TM. Similar disparities were found with the condition indexes. 

Site 3 had the highest CI and GI among sites in all months, while site 1 showed the lowest 

CI and GI at all time, which indicate a lower quality and may quantity of food at site 1 

compared to the other sites. Temperature showed both upwelling sites were exposed 

to long periods of upwelled water; however the temperature data showed even the two 

non-upwelling sites were influenced by a few upwelling events. A theory associated with 

upwelling proposed that at upwelling sites, nutrients and particles can be carried 

offshore during upwelling due to the hydrogeography of the area or to wind intensity 

and direction, resulting in phytoplankton-poor waters inshore (Brown and Field 1986, 

Wieters et al. 2003, Roughan et al. 2005). This offshore advection during upwelling is 

followed by onshore advection (either to the same point on the shore or farther 

downstream) during upwelling relaxation or downwelling. This suggests that the section 

of the coast downstream of the upwelling centres can exhibit higher phytoplankton 

concentrations than sites located at the upwelling centres, generating a source-sink type 

of geographic pattern of nearshore nutrients and phytoplankton along the coast. A few 

other studies support instead the idea that upwelling enhances nutrient levels, and thus 

stimulates phytoplankton and macrophyte growth at the site of upwelling (Nielsen and 

Navarrete 2004, Wieters 2005). The first hypothesis can be applied to sites 1 and 2, while 

the second hypothesis seems to apply to sites 3 and 4. Indeed, at site 2 upwelling 

occurred (e.g. in situ temperature data loggers) and the FA composition of the adductor 

muscles of specimens from this site were more enriched in diatom trophic markers 

compared to site 1. In addition, site 1 had the lowest CI values during all sampling events. 

Site 3 was characterised by dinoflagellate TM, and this suggests that the FA composition 

may reflect a later stage of upwelling (post diatom blooms) and site 4 did not reveal any 

clear FATM. The two perspectives can depend on the hydrogeography of the specific 

sites and perhaps the intensity of the event. For instance, the hydrogeographics at site 
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1 may result in offshore advection of water, whereas at site 3 the hydrogeography may 

retain phytoplankton onshore after upwelling blooms. The result of the present study 

partially contradict the finding of Xavier et al. (2007), which compared growth rate, 

recruitment and population structure of M. galloprovincialis at upwelling centres and 

downstream sites on the west coast of South Africa. They found strong variability among 

sites as here; however, they did not highlight dissimilarities between site 1 and 3 as 

found in this study. The dissimilarities between the two investigations are difficult to 

explain and further sampling would be required to fully explain these patterns. Certainly, 

the present study was conducted over a long period of time, across both upwelling and 

non-upwelling seasons, with several sampling events, while Xavier et al. (2007) 

evaluated the effects of upwelling on the CI of mussels abundances on the basis of a 

single sampling campaign. Inter-annual variability in upwelling intensity and frequency 

needs also to be considered as intensity of upwelling might change the characteristics 

of an event as observed by Smith et al. (2009) for recruitment of mussels. 

In the present investigation, no differences in FA signatures were found among 

samples from two heights of the shore (low and high intertidal). This suggests that 

specimens from the low and high intertidal mussel zones were exposed to the same food 

quality and they assimilated FA into their tissues in a similar way. It can also illustrate 

similar metabolic stress and survival strategies at both tidal heights. This is in 

contradiction of a previous study showing that SI signatures of individuals of the same 

species located only a few cm apart where subjected to different food sources due to 

different processes acting at microscales (Schaal et al. 2011). The present study showed 

at the opposite no differences between the FA composition of mussels suggesting a 

certain homogeneity of the food quality between the two heights. An important aspect 

to be considered is that the two studies were conducted using two different techniques, 

and this may explain the dissimilarities. SI are a more conservative tool compared to FA, 

integrating over a longer period of time (Pirini et al. 2007, Hill and McQuaid 2009), and 

for this reason can underline effects not detectable with FA analyses. However, further 

studies are needed to try to explain this discrepancy. 

Surprisingly in this study, no differences were found in the FA composition of the 

SPM at the different sites and sampling events suggesting a certain homogeneity of the 

food for intertidal populations. SPM reflects the FA composition of the water at the 
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moment of the sampling and for this reason it does not necessarily represent what the 

organisms where feeding on a few days/weeks before. It was therefore not expected to 

link the POM FA composition with the FA composition of the consumers but it was 

expected to detect some differences, in relation to upwelling. For example, more 

phytoplankton TM were expected at upwelling sites during the upwelling season. The 

spatial and temporal homogeneity of the SPM was even more unexpected as differences 

were found in the FA signature of the consumers. A possible explanation for this pattern 

is that every time SPM was sampled, the conditions among sites were similar, which 

could indicate that the conditions are changing rapidly after an upwelling event and go 

back to a common “baseline” status.  

 Previous studies showed the importance of upwelling  on the South African west 

coast to enhance primary production, as well as for growth and food quality for primary 

consumers (Bustamante et al. 1995, Xavier et al. 2007). In this study, adductor muscles 

had a strong phytoplankton FA signature in February, during the upwelling season and 

at all sites, suggesting that a very strong upwelling event occurred during the previous 

weeks, as was shown by the temperature results. In addition, even if upwelled waters 

were present only during the summer months, tissues of mussels showed similar 

proportions of PUFA-MUFA-SFA over time, indicating that the specimens were exposed 

to similar quality and quantity of food both in austral summer and winter and in both 

upwelling and non-upwelling conditions. Although the factor upwelling was not 

significant in any of the analyses, the present results suggest that upwelling played a 

role at all sites of the investigation and that it equally influences specimens at upwelling 

and non-upwelling sites. This indicates that the influence of upwelling on the west coast 

of South Africa is pervasive, rather than discrete, and that it necessary to categorize 

upwelling influence by referring to upwelling centres and downstream areas and by 

measuring their occurrence and intensity as they seem to be highly variable in time and 

space. 
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7. Synthesis 

 

7.1. Spatial variation in dietary regimes 

The diet of benthic filter feeders is affected by a range of factors operating 

simultaneously and at different spatial scales. Despite interspecific differences among 

the five species considered in this thesis, all of them responded to factors operating at 

large (100s km), meso (10s - 100s km) and local (from one to few km) scales. 

Along the South African coast, the main factor that was found to influence the dietary 

regime of filter feeders was biogeography. The fatty acid (FA) and stable isotope (SI) 

signatures of conspecific specimens from the three coasts were very different from each 

other, with the strongest differences being between specimens from the west coast and 

the other two coasts, where specimens of the west coast showed signs of better food 

quality than the south and east coasts (see Chapter 5). I attributed these dissimilarities 

to the influence of the cold eutrophic Benguela Current on the west coast and to the 

warm oligotrophic Agulhas Current on the south and east coasts. The Benguela is a 

highly productive system that is strongly characterised by upwelling events that enhance 

primary and secondary production (Andrews and Hutchings 1980, Shannon et al. 1984). 

In contrast, the Agulhas Current is oligotrophic and the south and east coasts exhibit less 

frequent and weaker upwelling events. These oceanographic systems would have an 

impact on the distribution and composition of the suspended particulate matter (SPM) 

as well as the production on coastal areas. Therefore, I hypothesised that the different 

hydrogeographic regimes along the coast of South Africa affected the dietary regime of 

primary consumers. In a broader scale, dissimilarities in food availability can also 

influence species richness, growth rates and patterns of distribution of benthic 

invertebrates (Huntley and Brooks 1982, Jones 1986, Rosenberg 1995, Sogard and Olla 

1996). While climate, water and air temperature are generally the main drivers of 

differences among bioregions in coastal areas (Rohde 1992, 1999, Willig et al. 2003, 

Ruttenberg et al. 2005, Dunn et al. 2009), it seems that the other critical factor along 

this coast is the  gradient of nutrient concentrations, that  increases from east to west 

reflecting a shift from oligotrophic to more eutrophic conditions as described in 

Chapters 3 and 5 (Fig 7.1). These strong dissimilarities among bioregions can have 
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profound consequences for the coastal environment. For example a few studies showed 

recruitment, growth and abundance of mussel populations differ among biogeographic 

provinces due to the effects of oceanographic patterns (e.g. currents and upwelling) on 

larval transport and seawater temperature (Smith et al. 2009). Another example is 

Mytilus galloprovincialis. This invasive species in South Africa is present only on the west 

and south coasts. Previous studies indicated the pattern of distribution of this species is 

driven by a wide range of factors, such as larval dispersal and the effects of temperature 

on adult performance (Zardi et al. 2007b, 2011). On the south coast, its abundance and 

biomass broadly increased from east to west, in parallel with the pattern of nutrients 

described above. This may suggest that the abundance and distribution of this species 

is also related to food availability. Similarly, Archambault at al. (1999) showed that 

mussels within a bay grow faster than specimens on the  open coast due to a higher food 

availability within bays and Thompson and Nichols (1988) indicated that the clam 

Macoma balthica had a fast growth rate in San Francisco Bay due to the high availability 

of chlorophyll a and the warmer temperature. 

 

Fig 7.1 Schematic of the increase of nutrients concentration from east to west passing from an 
oligotrophic to more eutrophic system. Map from http://www.sanbi.org/. 
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Within biogeographic provinces, other factors that operate at meso or local scales also 

influenced the diet of filter feeders, particularly upwelling. Upwelling events strongly 

influenced the SI and FA signatures of benthic filter feeders on the west coast, and the 

SI of specimens on the south coast. The upwelling effect on the diet of filter feeders was 

stronger in the highly productive Benguela system, a pattern that reflected the greater 

intensity of upwelling of this area, compared to the more oligotrophic system of the 

south coast. Generally, upwelling sites were influenced by upwelling, however within 

both coasts, the sites characterized by very frequent and/or strong upwelling events 

(Groenrivier and Port Alfred on the west and south coast, respectively), showed the 

strongest effect within each coast respectively (Chapter 5). Consequently, the factor 

upwelling is effectively nested within the factor biogeography, with generally weak 

upwelling in the more oligotrophic system (i.e. south coast) and more intense events in 

the eutrophic system (i.e. west coast). An alternative view to interpret the results is that 

biogeography is driven by upwelling. The large Benguela Current system is recognised 

as one of the main western boundary upwelling systems in the world oceans (Carr and 

Kearns 2003, Chavez and Messié 2009) and it strongly influences the ecosystems of the 

west coast of Southern Africa (Andrews and Hutchings 1980). Upwelling could represent 

the primary factor responsible for the biotype of the west coast, and therefore in this 

case the relationship between upwelling and bioregion would be hierarchical, with 

biogeography nested in upwelling. This hypothesis is supported by the findings of 

Chapter 6, which showed clearly that upwelling along the region between the Cape 

Peninsula and Elandsbaai (200 km) is relatively homogeneous and influences specimens 

at both upwelling centres and at downstream sites. In contrast, Chapter 5, in a study 

conducted over 400 km of coastline, indicated that the effect of upwelling on the west 

coast was discrete, with mussels and barnacles at upwelling sites having different FA 

and SI signatures from specimens at non-upwelling sites from the same coast and 

biogeographic province. The patterns found at Chapter 5 and 6 are very surprising since 

they showed different responses in relation to upwelling within the same bioregion. A 

possible explanation for this discrepancy could be related to the different spatial 

resolution of the two studies. One study was conducted over 400 km of coastline, which 

includes areas with frequent upwelling events (Chapter 5), whereas the other was at a 
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smaller scale and upwelling occurs only seasonally (200 km, Chapter 6). In addition, in 

Chapter 5, one of the sites chosen for the comparison experiences very frequent and 

intense upwelling events, which are stronger than the events on the southern west coast 

that occur only over the summer months (Andrews and Hutchings 1980, Shannon et al. 

1983, Field and Shillington 2006). These considerations suggest that, depending on the 

spatial scale of resolution used on the west coast, an upwelling effect is either discrete 

(at about 400 km) or diffuse (within 200 km).  

 

Other factors affecting the diet of primary producers at meso or local scales have also 

been investigated in this thesis. It was shown that anthropogenic factors can affect 

mussels and barnacles on the south coast of South Africa. Specifically, Chapter 3 

highlighted the effect of proximity to urbanized centres on the δ15N and FA signatures 

of benthic populations. Indeed this coast hosts few cities that can increase the amount 

of nutrients in the nearby coastal environment and thus modify the food source for 

benthic filter feeders. In this case, the consumers seemed to be positively influenced by 

the proximity of urbanized centres, showing an increase of polyunsaturated fatty acids 

(PUFA). A few studies have highlighted a negative correlation between increased 

urbanization and species diversity. For instance, Mangialajo et al. (2008) found a 

decrease in the abundance of a habitat forming species toward urbanized centres, with 

a complete loss of this species in urbanized area. In contrast, this study suggests that 

along the South African coast, human activities can positively influence natural benthic 

populations by improving food availability. Most studies of the effects of human 

activities on natural populations were conducted in highly urbanized centres (i.e. Europe 

and North America), and have focused on pollution or eutrophication (Phillips 1977, 

López Gappa et al. 1990, Mallin et al. 2000, Karlson et al. 2002, Verdelhos et al. 2005, 

Yang et al. 2008). Maybe the status of the cities in a developing country like South Africa 

offers an intermediate level of urbanisation, which is less detrimental to benthic 

populations compared to over-urbanised cities especially in developing countries. At the 

same time, this ecosystem offers an opportunity to evaluate anthropogenic effects in a 

developing countries. An anomalous finding here was M. galloprovincialis specimens 

collected in Mossel Bay, which seemed to be suffering from starvation or poor food 

quality, unlike Perna perna from the same mussels bed (Chapter 2). There is no obvious 
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explanation for this. Another anomaly was related to different responses of specimens 

depending on the city considered. Indeed, the specimens from Mossel Bay and Port 

Elizabeth contrasted from the specimens collected in East London, which showed no 

effect of urbanization on their FA or SI signatures. It was suggested that this discrepancy 

might originate from the location of East London on the open coastline while the former 

are located in bays, where water retention will be greater. 

 

Other variability was observed during this work among regions and site. On the south 

coast, specimens from the eastern region B (sites 1 and 2) were depleted in δ13C 

compared to the more western region A (site 3, 4, 5 and 6; Chapter 3). This pattern was 

probably due to the presence of a cell of continuous upwelling located in region B 

(Chapter 3 and 5). Benthic populations in upwelling areas showed lower δ13C signatures 

compared to specimens from non-upwelling areas, which reveal a different food source 

origin of specimens at upwelling centres compared to non-upwelling sites (Chapter 5). 

Multiple stressors can generate additive effects that may be synergistic, which amplify 

their effects, or antagonistic, when stressors mitigate each other (Crain et al. 2008). It is 

possible that the lack of an effect of urbanisation on specimens from East London was 

due to the combined effects of urbanisation and upwelling resulting in an antagonist 

effect. This would thus explain why no urbanization effect was observed on any of the 

specimens collected in East London. It is crucial to investigate the interactions of 

multiple stressors on ecosystems, as their combined action can determine the 

occurrence of other effects in marine assemblages. For example, a negative effect of a 

stressor may precondition a species or a community to be more or less sensitive to a 

second stressor, subsequently affecting the ecosystem (Crain et al. 2008). Importantly, 

the effect of urbanization was evaluated at cities along the south coast and should be 

considered within the larger context of biogeography. Possibly, in another 

biogeographic province that is a more productive, such as the west coast, the effect of 

urbanization would not be detectable because the productivity of the natural system 

would buffer the effect of urbanisation. 

 

One factor that was not found to influence the diet of filter feeders was freshwater 

inputs (Chapter 4). No freshwater effects were found on either the FA or SI signatures 



 Chapter 7- Synthesis 

126 
 

of any of the study species along the east coast of South Africa, at either meso or local 

scales. As discussed in Chapter 4 there are a few possible explanations for this, but 

importantly, all species of filter feeders showed the same lack of response. SI and FA are 

time-integrated techniques that reflect diet signatures over time. Thus supports the 

generalization that the dietary regimes of intertidal marine filter feeders are not 

influenced by freshwater inputs along this coast. 

 

Other factors that operate at small scales (i.e. few metres) did not play a role on the diet 

of filter feeders. Particularly no differences were recorded in either the condition index 

or the FA signatures between specimens from two heights of the shores (Chapter 6). A 

few factors have an important role in determining food availability for benthic 

populations at small scales. Wave action is one of the primary factors determines food 

distribution in coastal area, and it can strongly influence benthic populations (Paine and 

Levin 1981, Sousa 1984, Eisma and Kalf 1987, Bustamante et al. 1995). For instance, 

McQuaid and Branch (1984) showed that populations from exposed shores had higher 

biomass compared to specimens from sheltered areas due to higher wave exposure, 

which is one of the primary mechanisms of food supply for the intertidal benthos. High 

wave action can ensure more food availability for benthic organisms, compared to 

specimens in sheltered areas, and underpins the shift between filter-feeder and 

macroalgal domination of intertidal biomass (McQuaid and Branch 1985). The sites 

chosen for this comparison had the same wave exposure. In addition, the condition 

index of specimens from the two heights was not significantly different. Consequently, 

it was indicated that the populations at the two heights were subject to the same food 

availability. 

 

7.2. Critique of the techniques 

The present study showed the novelty of looking at the diet of marine organisms using 

a combination of SI and FA analyses. Separately, these techniques have been widely 

used in the past to look at trophic relationships in marine environments (McConnaughey 

and McRoy 1979, DeNiro and Epstein 1981, Napolitano 1999, Zhukova 2000, Hanson et 

al. 2010). Here, they provided exhaustive information on the diet of filter feeders in 

relation to the different hypotheses. However, a few criticisms can be made of these 
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techniques. Both provide information on the food sources assimilated by the organisms 

(Budge et al. 2006, Pirini et al. 2007). Fatty acid trophic markers (FATM) represent a 

particularly useful tool to trace which taxon of species was ingested and/ or assimilated 

by the consumers (Dalsgaard et al. 2003, Budge et al. 2006). However, with consumers, 

which often have a mixed diet, such as filter feeders, the results can be very difficult to 

interpret due to a mixture of trophic markers that cannot be assigned to a single prey, 

but only to a group of prey. For example, at upwelling sites on the west coast, filter 

feeders presented a mixed SI signature between those of phytoplankton from offshore 

and macroalgae from onshore and a FA composition enriched in PUFA compared to 

specimens from non-upwelling sites (Chapter 5). It was not possible, however, to 

identify which taxon (e.g. diatom, dinoflagellate, brown algae) was predominant in their 

diet.  

 

Little knowledge is available on the FA metabolic pathways of filter feeders. Specifically, 

there is a limited information on how and which FA are assimilated by the different filter 

feeder species, how they are stored or used by the organisms, and whether they are 

apportioned differently to the consumer’s tissues and, if so, in which proportions. 

Particular attention should be also given to non-methylene-interrupted FA (NMI). These 

FA are synthesised de novo in bivalves by elongation and Δ5 desaturation of 18:1w9 and 

16:1w7, with the latter being very abundant in several taxa of phytoplankton and the 

first being common in several marine organisms such as ciliate and copepods, as well as 

fish (Farkas et al. 1977, Sargent and Falk-Petersen 1988, Pirini et al. 2007, Barnathan 

2009). For instance, when the proportion of 16:1w7 is low in a consumers’ FA 

composition, but a high proportion of 16: PUFA, 20:5w3 and NMI is found, it is possible 

to suggest that the bivalves transformed 16:1w7 into NMI, and therefore, were feeding 

on diatoms. Having more information on the metabolism of these animals would 

increase our understanding of what is actually assimilated by the consumers, and how 

they invest in reproduction or growth. An integration with other techniques, for 

example laboratory experiments where the specimens are subject to a controlled diet 

(e.g. Pirini et al. 2007), or combining FA analyses and compound-specific carbon isotopic 

analyses of FA in order to trace changes in dietary sources (Koussoroplis et al. 2010), 

could provide information on the dietary assimilation and apportionment.  
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The biological role and function of NMI FA is an important issue to consider. In the 

present study, mussel species were characterized by a relatively high proportion of 20:2 

NMI and 22:2NMI relative to the other FAs. In addition, specimens from the west coast 

had higher proportions of these FA compared to those from the other two coasts 

(Chapter 5). Previous studies found high concentrations of NMI FA in phospholipids and 

their amounts were reversely related to the sum of 20:5w3 and 22:6w3 FAs. Their 

preferential incorporation into polar lipids suggests a structural and functional role of 

NMI FA in biological membranes (Barnathan 2009). Irazu et al. (1984) highlighted how 

the unsaturated structure of NMI FA confers on cell membranes a higher resistance to 

oxidative stress and microbial lipases than the common PUFA, and thus can represent a 

biochemical acclimation feature of benthic organisms to their specific habitat. Kraffe et 

al. (2004) suggested that the functional role of NMI FA could be related to the control 

and repair of structural and functional inadequacies due to a decrease of long-chain 

PUFA in structural lipids, particularly in the inner layer of the membrane where NMI FA 

are preferentially distributed. Other studies, showed that NMI have a melting point that 

is lower than that of homologes with double bonds interrupted by only one methylenic 

group (-CH3) and thus they may be more suitable for maintaining homeoviscosity at low 

temperatures (Barton and Gunstone 1975, Zakhartsev et al. 1998, Pirini et al. 2007). This 

implies that in cold environments, or during the transition from summer to winter, the 

proportion of NMI would increase. This is in accordance with the differences among 

biogeographic provinces found in this study. The temperature of the water on the west 

coast is substantially lower than on the other two coasts (Andrews and Hutchings 1980, 

Probyn et al. 1994). This suggests specimens on the west coast have higher values of 

NMI FA in order to ensure membrane fluidity.  

 

An aspect of FA techniques that was not evaluated in the present study, but that could 

be useful for future investigations, involves separating the neutral lipids (NL) from the 

polar lipids (PL). PL have a functional role controlling metabolic activities (e.g. 

membranes; Nevenzel 1970, Volkman et al. 1989). They are genetically controlled and 

as such, their FA composition remains relatively constant in an organism. Neutral lipids, 

in contrast, constitute the FA that are used for short or longer energy term storage and 
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are used by organisms as the need arises (Harrington et al. 1970, Sinanoglou and 

Miniadis-Meimaroglou 1998, Lee et al. 2006). In the present work, the total FA were 

analysed without prior separation of the lipid classes. An interesting approach would be 

to investigate if stronger levels of storage lipid change in relation to the different 

hypotheses investigated in this study. For instance, assess whether specimens under 

upwelling conditions built more lipid storage compared to specimens at non-upwelling 

sites in response to food pulses. This would provide more information on the 

metabolism of filter feeders. However, a negative aspect of separating FA into classes is 

that it requires substantially more time and higher costs than the extraction of TFA 

(Dalsgaard et al. 2003).  

Another limitation of this study is that different tissues were used for mussels and 

barnacles. For mussels, the adductor muscle was used due to its low turnover rate 

(Gorokhova and Hansson 1999); while the whole body of the barnacles was analysed as 

it was difficult to separate tissues from one and another due to small size, particularly 

in Chthamalus dentatus. Different mussel’ tissues can show dissimilar SI and FA 

signatures (Chapter 6; Hill and McQuaid 2009); therefore when the entire body is 

investigated the resultant signatures are a mixture from the various tissues. Possibly the 

dissimilarities in FA and SI signatures observed between barnacles and mussels (Chapter 

3 and 4) could be partially due to differences in the tissues analysed. 

Differences in the turnover rate among tissue types and among species also requires 

further investigation. Mussel tissues have different SI turnover times, for example for 

adductor muscle it is about nine months while for gills it is around three months (Hill 

and McQuaid 2009), while no information is available on the turnover times of barnacle 

tissues. In addition, it is known that the FA turnover rate of the whole mussel body is 

about one month (Pirini et al. 2007), but no information is available on the FA turnover 

of different mussel tissues or of barnacles. These kinds of information are particularly 

useful when an experiment is planned, for instance in order to decide how often the 

sampling should be conducted. If a study aims to investigate the temporal effect of a 

specific factor (e.g. upwelling), then it is essential to understand the rates of tissue 

turnover so that sampling can be conducted at the appropriate temporal scale. This is 

particularly important if different tissues have dissimilar turnover rates. In this case, a 



 Chapter 7- Synthesis 

130 
 

study needs to also focus on the appropriate tissue to use in relation to the specific 

hypothesis.  

 

7.3. Conclusion and perspectives 

This study constitutes a baseline for understanding the diet of filter feeders in relation 

to several factors operating at different spatial scales. This is fundamentally important 

because filter feeders play a key functional role in coastal areas as bioengineers and as 

habitat forming species (Jones et al. 1996, Gutiérrez et al. 2003, Cole et al. 2011). In this 

study, the species considered differed, and showed different diets, however they all 

showed similar responses to the factors investigated. With changing environmental 

conditions and anthropogenic influences, it is increasingly important to understand how 

these factors interact with coastal systems. As a fundamental ecological feature, food 

availability exerts bottom-up control on coastal ecosystems (Menge 2000). The fact that 

these effects influence habitat-forming intertidal species raises the potential for knock-

on effects within the broader system. The effect of changing food availability therefore 

has the potential to alter species richness and population dynamics, ultimately with 

consequences for ecosystem functioning. 

 

Given a scenario of climate change, ocean currents and upwelling are likely to change in 

response to alterations in temperature, precipitation and wind intensities (Timmermann 

et al. 1999). An increase of freshwater flux will potentially increase stratification of the 

water column, increasing the input of terrestrial nutrients, while decreasing vertical 

nutrient flux. Bakun (1990) predicted that the intensity and frequency of upwelling will 

increase due to an intensification of alongshore wind stress on the ocean surface; while 

Timmermann et al. (1999) predicted an increase of El Niño due to climate change. All 

these phenomena could affect nutrient supply and the transport of primary production, 

with important consequences for the population dynamics of consumers (Harley et al. 

2006). Although these changes are likely to influence biological productivity, changes 

are likely to be region-specific and at this stage they are not yet predictable (Harley et 

al. 2006). This thesis indicates that such oceanographic processes influence the diet of 

benthic organisms in different ways, at different scales and sometimes in an interactive 
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way. As a result making predictions about the consequences of large-scale and long-

term environmental changes is likely to be much more difficult than anticipated. 
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9. Appendices 

 

Appendix a Total fatty acid (TFA) composition of filter feeders in relation to anthropogenic effects. The values are percentages expressed as mean ± standard deviation. Only FA >1 % were displayed below. a) 

Ts- T. serrata. b) Oa- O. angulosa. c) Cd- C. dentatus. d) Pp- P. perna. BAME = bacterial fatty acids, SFA = saturated fatty acids, MUFA = monounsaturated fatty acids, PUFA = polyunsaturated fatty acids. 

a) 

Ts 1- East London  2- Kidd's beach 3- Port Elizabeth 4- St. Francis Bay 5- Mossel Bay 6- Jongensfontein 

TFA A B A B A B A B A B A B 

14:0 3.17 ± 0.73 2.71 ± 0.79 4.05 ± 1.27 3.88 ± 0.46 3.14 ± 1.49 2.50 ± 1.39 2.57 ± 0.42 2.98 ± 0.16 3.42 ± 0.41 1.37 ± 0.84 3.81 ± 1.09 3.48 ± 0.70 

16:0 18.79 ± 1.61 16.47 ± 0.68 18.31 ± 1.09 17.79 ± 0.96 17.09 ± 1.18 16.54 ± 1.67 15.99 ± 1.09 20.01 ± 1.01 18.73 ± 3.06 14.47 ± 2.66 16.33 ± 1.48 16.11 ± 0.22 

16:1w7 3.60 ± 0.49 3.47 ± 0.71 4.85 ± 1.19 5.02 ± 0.19 3.59 ± 1.29 2.74 ± 1.31 3.60 ± 0.54 3.15 ± 0.35 3.74 ± 0.37 2.16 ± 0.67 3.72 ± 0.68 3.39 ± 0.33 

18:0 8.18 ± 0.75 9.45 ± 0.32 8.05 ± 1.08 7.92 ± 0.49 8.15 ± 1.41 9.12 ± 1.52 8.53 ± 0.78 11.43 ± 1.01 9.20 ± 1.40 10.56 ± 0.85 8.38 ± 0.94 8.10 ± 0.46 

18:1w9 5.03 ± 0.12 5.24 ± 0.54 5.39 ± 0.23 5.48 ± 0.11 5.39 ± 0.60 5.46 ± 1.01 5.72 ± 0.50 5.24 ± 0.58 7.00 ± 0.57 5.26 ± 0.86 5.83 ± 0.26 5.03 ± 0.09 

18:1w7 3.73 ± 0.12 4.09 ± 0.33 3.79 ± 0.84 4.21 ± 0.17 3.20 ± 1.18 3.65 ± 1.15 5.14 ± 0.11 6.18 ± 0.45 7.27 ± 0.75 6.11 ± 0.38 2.87 ± 2.49 4.11 ± 0.12 

18:2w6 1.06 ± 0.13 0.87 ± 0.06 0.79 ± 0.10 0.87 ± 0.02 0.93 ± 0.21 0.92 ± 0.19 0.99 ± 0.12 0.74 ± 0.26 0.98 ± 0.27 0.96 ± 0.27 1.23 ± 0.06 1.26 ± 0.06 

18:3w3 3.37 ± 0.43 4.13 ± 1.00 3.04 ± 1.42 3.97 ± 0.52 4.45 ± 3.10 4.25 ± 3.10 3.93 ± 0.68 9.52 ± 2.33 5.51 ± 1.77 13.08 ± 7.18 5.54 ± 1.58 6.83 ± 1.87 

18:4w3 1.47 ± 0.29 0.97 ± 0.24 1.30 ± 0.46 1.31 ± 0.06 1.70 ± 0.80 1.48 ± 0.82 1.23 ± 0.33 0.70 ± 0.19 0.70 ± 0.15 0.60 ± 0.34 1.39 ± 0.23 1.40 ± 0.17 

20:1w11 0.70 ± 0.12 0.93 ± 0.22 0.76 ± 0.03 1.02 ± 0.24 0.97 ± 0.75 1.77 ± 0.09 1.54 ± 0.23 2.11 ± 0.12 1.02 ± 0.28 1.78 ± 0.72 1.06 ± 0.22 1.01 ± 0.09 

20:1w9 1.21 ± 0.16 1.50 ± 0.06 1.19 ± 0.20 1.18 ± 0.06 1.18 ± 0.25 1.24 ± 0.45 1.27 ± 0.19 1.29 ± 0.15 1.27 ± 0.20 1.31 ± 0.29 1.02 ± 0.15 1.04 ± 0.04 

20:1w7 0.57 ± 0.08 0.73 ± 0.06 0.64 ± 0.09 0.71 ± 0.10 0.61 ± 0.17 0.67 ± 0.16 0.89 ± 0.04 1.20 ± 0.11 1.46 ± 0.29 0.96 ± 0.08 0.80 ± 0.18 0.59 ± 0.01 

20:4w6 1.83 ± 0.27 2.35 ± 0.16 1.97 ± 0.10 2.09 ± 0.29 2.04 ± 0.05 1.94 ± 0.27 2.80 ± 0.18 1.75 ± 0.41 3.95 ± 1.29 2.87 ± 0.31 2.96 ± 0.68 2.24 ± 0.37 

20:5w3 20.73 ± 1.35 21.17 ± 1.37 21.54 ± 1.71 19.25 ± 1.06 19.98 ± 1.07 18.85 ± 2.18 17.37 ± 1.09 11.06 ± 1.57 12.65 ± 3.27 13.75 ± 4.38 16.68 ± 2.62 16.47 ± 0.37 

22:0 0.74 ± 0.05 0.87 ± 0.02 0.66 ± 0.14 0.77 ± 0.09 0.83 ± 0.27 0.95 ± 0.32 0.86 ± 0.15 1.30 ± 0.13 1.19 ± 0.16 1.87 ± 0.62 0.89 ± 0.09 0.97 ± 0.06 

22:5w3 1.29 ± 0.14 1.29 ± 0.15 1.85 ± 0.41 1.75 ± 0.24 1.06 ± 0.22 0.87 ± 0.29 1.22 ± 0.20 0.96 ± 0.09 1.99 ± 0.11 1.25 ± 0.47 1.17 ± 0.02 0.96 ± 0.10 

22:6w3 21.67 ± 0.49 21.15 ± 0.64 19.42 ± 0.62 19.93 ± 1.33 22.33 ± 2.05 23.56 ± 2.03 21.89 ± 0.78 15.15 ± 1.32 14.09 ± 2.25 17.88 ± 3.09 22.18 ± 0.76 22.90 ± 1.00 

BAME 2.86 ± 0.33 2.61 ± 0.37 2.39 ± 0.06 2.84 ± 0.19 3.34 ± 0.14 3.49 ± 0.42 4.48 ± 0.12 5.25 ± 0.15 5.82 ± 0.66 3.77 ± 0.50 4.13 ± 0.57 4.09 ± 0.07 

SFA 33.74 ± 1.71 32.11 ± 1.42 33.47 ± 1.32 33.21 ± 2.02 32.56 ± 1.24 32.61 ± 1.64 32.42 ± 1.08 40.96 ± 1.96 38.37 ± 5.40 32.04 ± 2.44 33.55 ± 2.13 32.75 ± 0.56 

MUFA 14.83 ± 0.40 15.96 ± 1.21 16.62 ± 0.27 17.62 ± 0.28 14.94 ± 0.85 15.53 ± 0.91 18.16 ± 0.80 19.17 ± 0.75 21.76 ± 0.78 17.58 ± 0.74 15.30 ± 3.15 15.18 ± 0.16 

PUFA 51.43 ± 1.65 51.93 ± 2.60 49.91 ± 1.59 49.17 ± 2.29 52.50 ± 0.74 51.86 ± 2.24 49.42 ± 1.74 39.87 ± 1.61 39.87 ± 6.15 50.38 ± 3.07 51.15 ± 5.26 52.07 ± 0.66 
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b) 

Oa 1- East London  2- Kidd's beach 3- Port Elizabeth 4- St. Francis Bay 5- Mossel Bay 6- Jongensfontein 

TFA A B A B A B A B A B A B 

14:0 5.82 ± 0.67 6.47 ± 0.40 7.11 ± 0.48 6.76 ± 0.97 5.83 ± 0.25 5.66 ± 0.30 2.37 ± 0.65 3.84 ± 1.05 5.40 ± 1.17 5.54 ± 0.28 5.21 ± 4.35 6.17 ± 0.38 

16:0 20.44 ± 0.77 21.07 ± 0.73 21.42 ± 0.19 21.49 ± 1.04 20.99 ± 1.48 20.96 ± 0.42 17.10 ± 1.65 17.64 ± 0.32 17.89 ± 1.39 18.99 ± 0.46 18.25 ± 1.85 19.79 ± 0.36 

16:1w7 6.90 ± 0.57 7.23 ± 0.39 7.91 ± 0.27 7.56 ± 0.43 6.04 ± 0.34 5.77 ± 0.09 3.66 ± 1.09 4.94 ± 0.66 5.79 ± 0.49 5.61 ± 0.14 4.77 ± 1.72 5.57 ± 0.42 

18:0 8.43 ± 0.60 8.38 ± 0.52 7.85 ± 0.59 8.41 ± 0.46 8.73 ± 1.13 8.43 ± 0.42 9.92 ± 0.46 9.08 ± 0.98 8.19 ± 0.93 8.17 ± 0.40 8.57 ± 2.95 7.43 ± 0.49 

18:1w9 5.44 ± 0.43 5.76 ± 0.16 5.21 ± 0.21 5.27 ± 0.04 5.70 ± 0.29 6.05 ± 0.26 5.31 ± 0.56 5.87 ± 0.22 6.84 ± 0.67 6.51 ± 0.20 5.96 ± 0.48 5.59 ± 0.09 

18:1w7 3.57 ± 0.47 2.99 ± 0.39 3.15 ± 0.11 3.37 ± 0.28 3.11 ± 0.11 3.08 ± 0.15 4.46 ± 0.31 5.02 ± 0.25 4.89 ± 0.95 4.95 ± 0.28 3.70 ± 1.47 3.09 ± 0.34 

18:2w6 1.24 ± 0.08 1.20 ± 0.06 1.05 ± 0.02 1.03 ± 0.06 1.26 ± 0.08 1.36 ± 0.16 1.26 ± 0.17 1.45 ± 0.12 1.67 ± 0.16 1.76 ± 0.06 1.34 ± 0.15 1.50 ± 0.04 

18:3w3 1.06 ± 0.10 0.86 ± 0.05 0.85 ± 0.05 0.82 ± 0.03 1.11 ± 0.06 1.20 ± 0.18 1.01 ± 0.04 1.19 ± 0.15 1.17 ± 0.13 1.30 ± 0.08 0.95 ± 0.18 1.15 ± 0.03 

18:4w3 1.99 ± 0.13 1.67 ± 0.11 1.83 ± 0.16 1.69 ± 0.11 2.18 ± 0.22 2.35 ± 0.14 1.33 ± 0.04 1.90 ± 0.39 1.45 ± 0.43 1.98 ± 0.05 1.78 ± 0.83 2.07 ± 0.03 

20:1w9 0.89 ± 0.09 0.83 ± 0.12 0.83 ± 0.05 0.88 ± 0.09 0.74 ± 0.12 0.79 ± 0.14 1.72 ± 0.31 1.15 ± 0.17 1.08 ± 0.03 0.80 ± 0.04 1.15 ± 0.71 0.86 ± 0.02 

20:4w6 1.70 ± 0.06 1.74 ± 0.05 1.66 ± 0.04 1.62 ± 0.12 1.42 ± 0.36 1.56 ± 0.17 1.60 ± 0.31 1.69 ± 0.30 2.76 ± 0.46 1.89 ± 0.19 1.83 ± 0.58 1.34 ± 0.20 

20:5w3 17.35 ± 0.73 17.70 ± 0.52 18.01 ± 0.05 17.69 ± 0.87 15.76 ± 0.87 15.67 ± 0.64 18.62 ± 1.51 17.44 ± 0.12 15.74 ± 1.77 15.98 ± 0.17 17.21 ± 3.09 15.62 ± 0.42 

22:5w3 1.87 ± 0.16 1.64 ± 0.13 1.91 ± 0.44 1.73 ± 0.17 1.13 ± 0.13 1.06 ± 0.09 1.05 ± 0.13 1.18 ± 0.04 1.27 ± 0.07 1.08 ± 0.11 0.96 ± 0.09 0.89 ± 0.01 

22:6w3 18.90 ± 1.55 18.44 ± 0.81 17.20 ± 0.08 17.48 ± 0.71 20.38 ± 1.29 20.91 ± 0.63 25.11 ± 2.80 21.41 ± 1.08 18.13 ± 0.27 19.27 ± 1.00 22.86 ± 0.72 22.81 ± 0.75 

BAME 3.69 ± 0.44 3.41 ± 0.33 3.30 ± 0.43 3.54 ± 0.57 4.98 ± 0.50 4.50 ± 0.24 4.72 ± 0.96 5.54 ± 0.41 7.24 ± 0.71 5.57 ± 0.24 4.67 ± 0.18 5.16 ± 0.23 

SFA 38.38 ± 0.93 39.33 ± 1.31 39.69 ± 0.32 40.19 ± 1.41 40.53 ± 2.65 39.56 ± 0.97 34.11 ± 2.73 36.11 ± 0.56 38.72 ± 0.99 38.27 ± 0.58 36.71 ± 3.43 38.55 ± 0.70 

MUFA 16.79 ± 1.01 16.81 ± 0.21 17.11 ± 0.90 17.08 ± 0.39 15.59 ± 0.50 15.69 ± 0.48 15.15 ± 1.39 16.99 ± 0.24 18.60 ± 0.32 17.86 ± 0.41 15.58 ± 0.19 15.11 ± 0.64 

PUFA 44.84 ± 1.87 43.86 ± 1.44 43.21 ± 0.23 42.72 ± 1.79 43.88 ± 2.74 44.75 ± 1.39 50.74 ± 4.08 46.91 ± 0.80 42.68 ± 1.22 43.87 ± 0.81 47.71 ± 3.27 46.33 ± 1.22 
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c) 

C.d 1- East London  2- Kidd's beach 3- Port Elizabeth 4- St. Francis Bay 5- Mossel Bay 6- Jongensfontein 

TFA A B A B A B A B A B A B 

14:0 2.32 ± 0.88 3.47 ± 0.56 4.30 ± 0.74 4.20 ± 0.52 4.58 ± 0.86 3.74 ± 0.81 2.48 ± 0.48 3.16 ± 0.35 4.32 ± 0.52 1.64 ± 0.47 1.83 ± 0.29 3.18 ± 0.53 

16:0 20.76 ± 2.67 24.25 ± 0.92 20.96 ± 0.54 19.86 ± 0.17 32.29 ± 4.67 33.73 ± 8.96 28.00 ± 2.49 41.05 ± 2.43 33.50 ± 2.69 32.53 ± 3.73 24.01 ± 5.40 26.32 ± 5.76 

16:1w7 3.47 ± 0.94 4.73 ± 0.52 5.13 ± 0.71 5.05 ± 0.43 2.93 ± 0.27 2.32 ± 0.44 2.36 ± 0.23 1.50 ± 0.30 2.64 ± 0.22 1.77 ± 0.29 1.88 ± 0.07 2.97 ± 0.27 

18:0 10.95 ± 1.23 12.37 ± 0.94 9.18 ± 0.62 8.51 ± 0.35 19.16 ± 2.52 21.29 ± 4.92 18.47 ± 1.86 27.62 ± 1.49 14.42 ± 1.60 25.15 ± 3.43 15.94 ± 4.13 14.55 ± 4.12 

18:1w9 5.82 ± 0.70 6.72 ± 0.37 6.21 ± 0.28 5.96 ± 0.12 6.00 ± 0.77 5.43 ± 1.19 5.40 ± 0.36 2.51 ± 0.86 5.91 ± 0.17 5.13 ± 1.17 5.94 ± 0.30 6.42 ± 0.45 

18:1w7 3.13 ± 0.39 3.64 ± 0.17 3.14 ± 0.04 2.71 ± 0.28 2.46 ± 0.25 3.73 ± 0.78 3.63 ± 0.52 1.63 ± 0.65 3.63 ± 0.15 2.75 ± 0.65 3.36 ± 0.14 3.04 ± 0.07 

18:2w6 1.23 ± 0.15 0.93 ± 0.09 0.90 ± 0.06 0.94 ± 0.03 0.50 ± 0.28 0.40 ± 0.36 0.82 ± 0.16 0.41 ± 0.23 1.34 ± 0.22 0.61 ± 0.20 1.05 ± 0.30 1.11 ± 0.40 

18:3w3 0.84 ± 0.17 0.58 ± 0.04 0.54 ± 0.05 0.62 ± 0.05 0.43 ± 0.12 0.59 ± 0.22 0.45 ± 0.05 0.04 ± 0.07 0.54 ± 0.06 0.52 ± 0.11 0.43 ± 0.22 0.48 ± 0.25 

18:4w3 0.96 ± 0.16 0.67 ± 0.17 0.87 ± 0.17 1.07 ± 0.09 0.42 ± 0.19 0.46 ± 0.14 0.32 ± 0.16 0.29 ± 0.51 0.79 ± 0.36 0.33 ± 0.19 0.36 ± 0.22 0.56 ± 0.36 

20:1w9 0.82 ± 0.07 0.94 ± 0.17 0.54 ± 0.02 0.46 ± 0.01 0.83 ± 0.04 0.86 ± 0.28 0.63 ± 0.18 0.53 ± 0.29 0.74 ± 0.03 1.00 ± 0.26 0.56 ± 0.17 0.68 ± 0.17 

20:1w7 0.48 ± 0.04 0.56 ± 0.04 0.35 ± 0.30 0.00 ± 0.00 0.81 ± 0.19 0.55 ± 0.23 0.55 ± 0.09 0.16 ± 0.14 0.45 ± 0.14 0.82 ± 0.28 0.16 ± 0.23 0.40 ± 0.15 

20:4w6 2.61 ± 0.17 2.24 ± 0.10 3.35 ± 0.12 2.61 ± 0.02 1.14 ± 0.44 1.13 ± 0.89 2.70 ± 0.35 0.54 ± 0.50 3.32 ± 0.52 2.16 ± 0.86 3.74 ± 0.78 2.21 ± 0.53 

20:5w3 17.78 ± 2.68 14.35 ± 1.14 19.82 ± 0.65 20.40 ± 0.51 6.01 ± 3.35 5.41 ± 5.06 10.62 ± 2.36 2.19 ± 1.44 9.15 ± 2.41 6.74 ± 3.32 13.05 ± 4.52 11.92 ± 4.36 

22:0 0.97 ± 0.25 1.23 ± 0.16 0.87 ± 0.07 0.90 ± 0.04 2.51 ± 0.28 2.46 ± 0.28 2.37 ± 0.16 2.97 ± 0.15 1.86 ± 0.37 2.76 ± 0.36 1.92 ± 0.42 2.00 ± 0.47 

22:5w3 1.23 ± 0.15 1.08 ± 0.05 1.79 ± 0.05 1.60 ± 0.04 0.70 ± 0.11 0.71 ± 0.32 0.57 ± 0.11 0.00 ± 0.00 0.54 ± 0.16 0.14 ± 0.21 0.50 ± 0.16 1.01 ± 0.77 

22:6w3 23.01 ± 3.95 18.23 ± 1.67 18.41 ± 1.31 21.14 ± 1.18 10.78 ± 5.41 8.32 ± 8.18 13.29 ± 2.70 4.33 ± 1.81 9.79 ± 1.26 7.95 ± 4.59 19.16 ± 5.42 17.72 ± 6.84 

BAME 3.35 ± 0.59 3.79 ± 0.50 2.91 ± 0.23 2.98 ± 0.25 8.17 ± 1.65 8.70 ± 1.87 6.71 ± 0.68 10.04 ± 0.70 6.24 ± 0.64 7.40 ± 1.17 5.31 ± 1.20 5.23 ± 1.28 

SFA 38.35 ± 5.38 45.11 ± 2.28 38.23 ± 0.88 36.46 ± 0.87 66.70 ± 9.78 69.92 ± 16.17 58.03 ± 5.05 84.84 ± 4.69 60.35 ± 5.12 69.49 ± 9.14 49.01 ± 11.41 51.28 ± 11.86 

MUFA 13.98 ± 1.96 16.81 ± 0.64 16.10 ± 0.93 15.16 ± 0.36 13.31 ± 1.12 13.06 ± 2.29 13.20 ± 0.75 7.36 ± 1.13 14.18 ± 0.34 12.07 ± 1.33 12.69 ± 0.38 13.70 ± 0.72 

PUFA 47.66 ± 7.34 38.08 ± 2.66 45.68 ± 1.70 48.38 ± 1.23 19.98 ± 9.52 17.01 ± 14.19 28.77 ± 5.49 7.81 ± 3.84 25.47 ± 4.79 18.44 ± 8.90 38.30 ± 11.53 35.01 ± 11.88 
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d) 

Pp 1- East London  2- Kidd's beach 3- Port Elizabeth 4- St. Francis Bay 5- Mossel Bay 6- Jongensfontein 

TFA A B A B A B A B A B A B 

14:0 1.95 ± 0.41 2.73 ± 0.13 2.04 ± 0.14 1.82 ± 0.37 1.54 ± 0.30 2.11 ± 0.17 3.43 ± 0.78 3.96 ± 0.64 1.17 ± 0.18 1.83 ± 0.15 1.80 ± 0.22 1.64 ± 0.39 

16:0 14.61 ± 1.90 19.99 ± 2.59 15.25 ± 0.36 14.95 ± 0.73 13.91 ± 1.06 18.24 ± 2.40 26.61 ± 8.51 30.71 ± 5.87 15.94 ± 0.12 15.01 ± 1.22 18.80 ± 2.72 18.68 ± 3.80 

16:1w7 3.66 ± 0.29 3.68 ± 0.25 2.68 ± 0.30 2.42 ± 0.26 2.93 ± 0.42 2.87 ± 0.63 3.24 ± 0.55 2.66 ± 0.12 2.10 ± 0.25 2.84 ± 0.26 2.64 ± 0.19 2.12 ± 0.06 

18:0 8.05 ± 2.03 11.45 ± 1.91 7.02 ± 0.55 7.04 ± 0.38 6.49 ± 0.45 9.93 ± 1.98 12.20 ± 3.91 11.64 ± 2.24 6.33 ± 1.12 6.53 ± 0.83 7.82 ± 1.01 8.30 ± 2.03 

18:1w9 2.09 ± 0.53 1.79 ± 0.25 0.78 ± 0.09 0.94 ± 0.15 1.19 ± 0.24 1.65 ± 0.15 1.95 ± 0.72 2.02 ± 0.39 1.25 ± 0.28 1.22 ± 0.35 1.46 ± 0.05 1.24 ± 0.16 

18:1w7 2.73 ± 0.33 2.29 ± 0.27 1.19 ± 1.03 2.17 ± 0.19 2.85 ± 0.66 2.02 ± 0.24 2.06 ± 0.10 2.05 ± 0.32 1.91 ± 0.42 1.56 ± 0.33 1.97 ± 0.42 2.12 ± 0.30 

18:2w6 2.16 ± 0.48 1.16 ± 0.41 2.42 ± 0.21 2.55 ± 0.36 2.28 ± 0.33 1.70 ± 0.63 1.48 ± 0.97 1.19 ± 0.38 2.77 ± 0.65 3.09 ± 0.73 2.41 ± 0.42 2.55 ± 0.53 

18:3w3 0.79 ± 0.31 0.14 ± 0.24 1.13 ± 0.04 1.14 ± 0.20 1.02 ± 0.12 0.43 ± 0.38 0.39 ± 0.68 0.41 ± 0.28 1.12 ± 0.35 1.15 ± 0.15 0.77 ± 0.22 0.89 ± 0.36 

18:4w3 0.50 ± 0.34 0.00 ± 0.00 1.00 ± 0.25 0.88 ± 0.04 1.36 ± 0.19 0.32 ± 0.27 0.47 ± 0.82 0.22 ± 0.38 1.05 ± 0.33 1.12 ± 0.17 0.54 ± 0.18 0.69 ± 0.23 

20:1w11 1.37 ± 0.22 1.60 ± 0.19 1.93 ± 0.28 1.61 ± 0.20 1.40 ± 0.18 1.59 ± 0.24 1.60 ± 0.43 1.61 ± 0.19 1.95 ± 0.29 1.90 ± 0.41 1.69 ± 0.21 1.38 ± 0.29 

20:1w9 4.38 ± 1.21 5.99 ± 0.63 2.68 ± 0.18 2.80 ± 0.18 3.25 ± 0.25 4.97 ± 0.37 6.65 ± 2.60 7.15 ± 0.88 3.05 ± 0.33 2.83 ± 0.09 4.30 ± 1.37 3.65 ± 0.90 

20:1w7 1.40 ± 0.53 1.94 ± 0.35 0.46 ± 0.80 0.24 ± 0.21 1.29 ± 0.38 1.53 ± 0.49 1.20 ± 0.51 1.46 ± 0.32 0.64 ± 0.23 0.68 ± 0.27 0.84 ± 0.35 0.55 ± 0.11 

20:2 NMI1 4.49 ± 0.23 3.38 ± 0.63 6.52 ± 0.41 5.61 ± 1.10 4.34 ± 0.92 5.11 ± 0.58 2.93 ± 0.80 2.35 ± 0.90 5.48 ± 0.99 5.95 ± 0.78 4.91 ± 0.55 3.75 ± 0.53 

20:2 NMI2 0.61 ± 0.39 1.11 ± 0.47 1.04 ± 0.73 0.55 ± 0.21 0.37 ± 0.01 1.64 ± 1.06 0.90 ± 0.94 1.21 ± 0.55 0.51 ± 0.28 0.38 ± 0.09 0.71 ± 0.26 0.47 ± 0.15 

20:4w6 6.52 ± 1.19 4.82 ± 0.73 5.41 ± 0.83 5.69 ± 0.30 6.68 ± 0.89 4.80 ± 1.16 2.88 ± 1.64 2.02 ± 0.59 8.32 ± 1.66 6.18 ± 0.36 5.52 ± 0.97 5.20 ± 0.92 

20:5w3 7.13 ± 2.52 3.80 ± 1.09 7.82 ± 0.86 8.43 ± 0.62 11.01 ± 1.26 4.52 ± 0.47 3.83 ± 3.66 2.57 ± 1.81 6.80 ± 0.74 7.01 ± 0.37 5.43 ± 1.57 6.89 ± 1.62 

22:2w6 2.64 ± 0.64 1.82 ± 0.25 2.39 ± 0.63 2.16 ± 0.28 1.95 ± 0.36 2.63 ± 0.29 1.35 ± 0.47 1.15 ± 0.38 2.39 ± 0.31 3.10 ± 0.73 2.37 ± 0.21 1.90 ± 0.64 

22:2 NMI1 7.34 ± 0.20 6.37 ± 0.28 6.61 ± 0.78 5.76 ± 0.29 6.24 ± 1.25 7.05 ± 1.53 3.38 ± 1.28 2.85 ± 1.38 6.13 ± 0.99 6.44 ± 0.88 5.92 ± 0.54 5.10 ± 0.95 

22:2 NMI2 2.62 ± 1.19 4.20 ± 3.02 0.97 ± 0.37 1.19 ± 0.28 0.65 ± 0.16 1.38 ± 0.92 1.78 ± 1.54 2.53 ± 1.58 1.61 ± 0.96 0.91 ± 0.31 1.38 ± 0.47 1.44 ± 0.79 

22:3 NMI 1.57 ± 0.20 1.23 ± 0.10 1.01 ± 0.35 1.28 ± 0.45 1.64 ± 0.11 1.42 ± 0.56 0.57 ± 0.99 0.36 ± 0.62 1.92 ± 0.14 1.99 ± 0.02 1.59 ± 0.33 1.59 ± 0.47 

22:4w6 2.40 ± 0.05 2.07 ± 0.42 1.79 ± 0.10 1.77 ± 0.24 1.94 ± 0.50 1.71 ± 0.33 0.30 ± 0.52 0.36 ± 0.32 2.69 ± 0.78 1.50 ± 0.11 1.78 ± 0.36 1.07 ± 0.17 

22:5w6 1.25 ± 0.12 1.14 ± 0.28 1.47 ± 0.38 1.37 ± 0.12 1.14 ± 0.24 1.13 ± 0.25 0.68 ± 0.69 0.73 ± 0.11 1.24 ± 0.08 1.37 ± 0.05 1.38 ± 0.26 1.33 ± 0.04 

22:5w3 2.90 ± 0.71 2.01 ± 0.31 2.67 ± 0.55 3.05 ± 0.29 3.17 ± 0.27 2.08 ± 0.35 1.18 ± 1.12 1.15 ± 0.37 2.23 ± 0.33 2.22 ± 0.34 2.30 ± 0.15 2.00 ± 0.42 

22:6w3 12.93 ± 2.17 9.34 ± 2.71 18.14 ± 2.43 19.38 ± 0.76 17.85 ± 1.30 13.71 ± 1.03 11.97 ± 7.55 9.55 ± 4.45 16.47 ± 1.01 18.92 ± 0.96 16.42 ± 3.54 20.23 ± 2.55 

BAME 3.91 ± 0.91 5.97 ± 0.55 5.57 ± 0.63 5.17 ± 0.61 3.49 ± 0.31 5.46 ± 0.19 6.96 ± 2.12 8.11 ± 2.35 4.93 ± 0.22 4.29 ± 0.08 5.28 ± 0.61 5.20 ± 1.04 

SFA 28.52 ± 5.21 40.13 ± 3.22 29.87 ± 0.84 28.99 ± 1.15 25.43 ± 1.15 35.73 ± 4.66 49.21 ± 15.22 54.42 ± 10.95 28.37 ± 1.18 27.67 ± 0.64 33.70 ± 4.47 33.82 ± 6.92 

MUFA 15.62 ± 2.46 17.30 ± 0.19 9.71 ± 1.97 10.18 ± 0.18 12.91 ± 1.97 14.64 ± 0.28 16.71 ± 3.38 16.94 ± 0.88 10.91 ± 0.92 11.02 ± 0.33 12.89 ± 2.19 11.06 ± 0.37 

PUFA 55.86 ± 7.43 42.57 ± 3.41 60.41 ± 2.75 60.83 ± 1.10 61.66 ± 3.09 49.63 ± 4.45 34.08 ± 18.35 28.64 ± 10.73 60.73 ± 1.40 61.32 ± 0.96 53.41 ± 6.66 55.12 ± 7.27 

 



 

188 
 

Appendix b  Total fatty acids (TFA) composition of filter feeders in relation to effect of riverine input. The values are 

percentages expressed as mean ± standard deviation. Only FA >1 % were displayed below. A) Ts- T. serrata. B) Oa- O. 

angulosa. C) Cd- C. dentatus. D) Pp- P. perna. BAME = bacterial fatty acids. SFA = saturated fatty acids. MUFA = 
monounsaturated fatty acids. PUFA = polyunsaturated fatty acids. 16-PUFA = 16:2w4, 16:3w4 and 16:4w1; 20-MUFA= 
20:1ww1. 20:1w9 and 20:1w7; 20:3 PUFA= 20:3w6 and 20:3w3; 22-MUFA= 22:1w11, 20:1w9 and 20:1w7. 

a) 

Ts 
Site 1- 

Mzimvubu 

Site 2-  

Mbotyi 

Site 3- 

Mtamvuna 

Site 4- 

Pennington 

Site 5-  

Ballito 

Site 6-  

Thukela TFA 

14:0 3.51 ± 0.88 3.44 ± 0.90 3.42 ± 0.92 3.07 ± 0.83 3.03 ± 0.80 3.16 ± 0.70 

16:0 19.00 ± 0.98 18.72 ± 0.88 18.97 ± 0.54 18.93 ± 0.53 19.38 ± 1.30 19.41 ± 1.28 

16:1w7 4.44 ± 1.07 4.36 ± 1.10 4.36 ± 1.10 3.96 ± 1.11 3.90 ± 1.08 4.06 ± 1.00 

18:0 8.91 ± 1.04 9.12 ± 0.95 9.01 ± 0.83 9.42 ± 1.02 9.82 ± 1.11 9.75 ± 1.09 

18:1w9 5.10 ± 0.24 5.14 ± 0.30 5.13 ± 0.30 5.13 ± 0.30 5.40 ± 0.78 5.56 ± 0.75 

18:1w7 4.33 ± 0.45 4.31 ± 0.46 4.23 ± 0.39 4.38 ± 0.38 4.58 ± 0.52 4.35 ± 0.62 

18:4w3 0.93 ± 0.19 0.93 ± 0.20 1.01 ± 0.24 0.98 ± 0.23 0.89 ± 0.33 0.93 ± 0.30 

20:1w9 1.31 ± 0.21 1.35 ± 0.21 1.31 ± 0.17 1.41 ± 0.25 1.54 ± 0.38 1.58 ± 0.38 

20:4w6 2.86 ± 0.15 2.93 ± 0.28 2.95 ± 0.27 2.92 ± 0.29 2.93 ± 0.29 3.01 ± 0.37 

20:5w3 21.40 ± 0.91 21.20 ± 1.07 20.93 ± 0.75 20.77 ± 0.83 19.47 ± 2.67 19.00 ± 2.50 

22:5w3 1.96 ± 0.28 1.93 ± 0.28 1.93 ± 0.27 1.86 ± 0.32 1.65 ± 0.37 1.65 ± 0.37 

22:6w3 18.81 ± 1.21 19.06 ± 1.38 18.91 ± 1.35 19.03 ± 1.25 18.83 ± 1.47 18.83 ± 1.48 

24:1w9 0.76 ± 0.07 0.78 ± 0.05 0.81 ± 0.07 0.98 ± 0.40 1.07 ± 0.40 1.11 ± 0.38 

BAME 2.54 ± 0.32 2.57 ± 0.32 2.72 ± 0.37 2.77 ± 0.37 2.99 ± 0.28 2.96 ± 0.30 

SFA 34.63 ± 0.87 34.53 ± 0.92 34.83 ± 0.79 34.97 ± 0.94 36.11 ± 2.44 36.18 ± 2.41 

MUFA 16.90 ± 0.76 16.86 ± 0.77 16.83 ± 0.80 16.78 ± 0.76 17.44 ± 1.93 17.61 ± 1.80 

PUFA 48.46 ± 1.45 48.61 ± 1.53 48.34 ± 1.33 48.25 ± 1.43 46.45 ± 4.32 46.21 ± 4.16 
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b) 

Oa 

Site 1- 

Mzimvubu 

Site 2- 

 Mbotyi 

Site 3- 

Mtamvuna 

Site 4- 

Pennington 

Site 5-  

Ballito 

Site 6-  

Thukela TFA 

14:0 6.71 ± 0.92 5.62 ± 0.94 5.12 ± 1.25 4.76 ± 1.87 3.43 ± 1.10 1.83 ± 1.23 

16:0 20.25 ± 0.88 19.82 ± 1.03 24.78 ± 5.06 23.65 ± 2.85 22.27 ± 8.08 17.54 ± 1.89 

16:1w7 8.05 ± 0.62 5.57 ± 2.75 4.36 ± 2.16 6.01 ± 1.78 4.91 ± 1.15 3.52 ± 1.45 

16-PUFA 1.24 ± 0.31 0.93 ± 0.22 0.76 ± 0.10 0.93 ± 0.50 0.76 ± 0.29 0.91 ± 0.22 

18:0 7.67 ± 0.33 8.51 ± 0.52 13.19 ± 3.02 11.63 ± 2.97 11.19 ± 3.86 11.63 ± 1.42 

18:1w9 4.59 ± 0.20 5.22 ± 0.31 4.66 ± 0.77 4.80 ± 0.46 5.68 ± 1.43 5.64 ± 0.60 

18:1w7 3.39 ± 0.28 3.26 ± 0.12 3.18 ± 0.17 4.16 ± 0.70 3.84 ± 0.18 4.55 ± 0.85 

18:2w6 1.00 ± 0.04 1.12 ± 0.07 0.89 ± 0.14 1.06 ± 0.25 1.25 ± 0.11 1.16 ± 0.24 

18:4w3 1.29 ± 0.10 1.24 ± 0.20 0.79 ± 0.28 0.81 ± 0.19 0.90 ± 0.25 0.97 ± 0.23 

20-MUFA 1.34 ± 0.21 1.60 ± 0.15 2.49 ± 0.74 2.07 ± 0.79 2.11 ± 0.24 3.01 ± 0.73 

20:4w6 2.09 ± 0.07 2.13 ± 0.11 1.87 ± 0.50 1.82 ± 0.32 1.81 ± 0.28 2.22 ± 0.17 

20:5w3 18.00 ± 0.52 16.80 ± 0.44 12.88 ± 4.34 12.66 ± 2.06 12.68 ± 4.70 15.38 ± 0.97 

22-MUFA 0.51 ± 0.36 0.81 ± 0.56 1.05 ± 0.48 0.91 ± 0.21 1.14 ± 0.27 1.40 ± 0.47 

22:5w3 1.88 ± 0.08 1.75 ± 0.13 1.65 ± 0.37 1.23 ± 0.18 1.09 ± 0.38 1.31 ± 0.27 

22:6w3 16.62 ± 0.94 18.96 ± 1.35 13.07 ± 5.43 13.40 ± 3.27 18.48 ± 7.20 20.88 ± 0.61 

24:1w9 0.81 ± 0.08 0.96 ± 0.14 0.66 ± 0.73 1.13 ± 0.29 1.06 ± 0.21 1.45 ± 0.60 

BAME 2.67 ± 0.11 3.53 ± 0.54 4.93 ± 0.62 4.89 ± 0.93 4.45 ± 1.79 3.85 ± 0.54 

SFA 37.30 ± 0.99 37.48 ± 1.59 48.02 ± 8.75 44.94 ± 5.44 41.34 ± 14.36 34.85 ± 2.36 

MUFA 17.35 ± 0.50 15.83 ± 2.66 13.91 ± 1.46 17.01 ± 1.15 16.63 ± 2.54 16.56 ± 1.15 

PUFA 44.01 ± 0.85 45.10 ± 1.38 35.57 ± 9.46 35.98 ± 5.39 39.91 ± 12.44 45.58 ± 1.28 
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c) 

Cd 
Site 1- 

Mzimvubu 

Site 2- 

 Mbotyi 

Site 3- 

Mtamvuna 

Site 4- 

Pennington 

Site 5-  

Ballito 

Site 6-  

Thukela TFA 

14:0 4.51 ± 0.85 3.62 ± 0.73 3.79 ± 0.51 4.20 ± 0.83 3.06 ± 0.47 1.68 ± 0.39 

16:0 23.91 ± 1.99 23.40 ± 3.20 30.19 ± 6.78 39.54 ± 3.20 26.83 ± 2.40 29.28 ± 6.58 

16:1w7 5.54 ± 0.84 4.56 ± 0.37 3.69 ± 0.98 2.91 ± 1.56 3.57 ± 0.42 1.74 ± 0.57 

18:0 12.37 ± 1.44 11.54 ± 2.42 15.47 ± 5.61 19.79 ± 5.38 14.45 ± 2.25 20.33 ± 5.84 

18:1w9 6.13 ± 0.60 6.10 ± 0.77 4.71 ± 0.80 3.18 ± 1.53 5.29 ± 0.51 4.22 ± 1.48 

18:1w7 3.48 ± 0.29 3.00 ± 0.42 2.84 ± 1.47 2.89 ± 1.61 2.81 ± 0.67 1.81 ± 0.64 

18:2w6 0.89 ± 0.07 1.08 ± 0.34 0.27 ± 0.09 0.77 ± 0.49 1.22 ± 0.23 0.84 ± 0.37 

18:3w3 0.56 ± 0.09 0.85 ± 0.45 0.65 ± 0.34 0.41 ± 0.29 0.79 ± 0.20 0.59 ± 0.30 

18:4w3 0.72 ± 0.15 1.15 ± 0.53 1.07 ± 0.23 1.06 ± 0.81 0.75 ± 0.20 0.54 ± 0.14 

20-MUFA 1.00 ± 0.07 1.55 ± 0.24 2.83 ± 0.61 1.17 ± 0.22 1.20 ± 0.24 1.12 ± 0.33 

20:1w9 0.70 ± 0.10 0.44 ± 0.06 2.16 ± 1.39 0.49 ± 0.18 0.70 ± 0.61 0.54 ± 0.28 

20:4w6 2.70 ± 0.41 2.95 ± 0.82 3.62 ± 2.49 1.26 ± 0.70 3.44 ± 0.39 3.21 ± 1.47 

20:5w3 13.97 ± 2.50 14.08 ± 3.82 8.51 ± 4.67 4.35 ± 2.81 11.86 ± 1.39 9.39 ± 4.65 

22:0 1.31 ± 0.27 1.17 ± 0.41 1.67 ± 0.83 1.82 ± 0.69 1.65 ± 0.36 2.11 ± 0.59 

20-MUFA 0.84 ± 0.38 0.81 ± 0.48 1.90 ± 0.87 0.83 ± 0.32 0.47 ± 0.17 1.03 ± 1.10 

22:5w3 1.27 ± 0.22 1.34 ± 0.35 1.67 ± 0.75 0.60 ± 0.37 0.78 ± 0.12 0.83 ± 0.17 

22:6w3 14.70 ± 3.18 15.87 ± 4.22 7.82 ± 2.38 5.62 ± 2.03 15.33 ± 2.92 15.18 ± 6.61 

BAME 4.23 ± 0.90 4.46 ± 1.75 6.79 ± 1.45 7.27 ± 0.53 4.69 ± 0.68 4.35 ± 1.27 

SFA 46.32 ± 4.33 44.20 ± 7.56 57.91 ± 13.87 72.62 ± 8.70 50.67 ± 4.31 57.76 ± 14.38 

MUFA 17.11 ± 1.64 16.20 ± 2.06 16.12 ± 4.62 10.99 ± 4.21 13.40 ± 1.46 9.97 ± 1.78 

PUFA 36.56 ± 5.84 39.60 ± 9.56 25.98 ± 9.44 16.39 ± 4.77 35.93 ± 4.26 32.27 ± 12.78 
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d) 

Pp 

Site 1- 

Mzimvubu 

Site 2-  

Mbotyi 

Site 3- 

Mtamvuna 

Site 4- 

Pennington 

Site 5-  

Ballito 

Site 6-  

Thukela TFA 

14:0 2.78 ± 0.17 2.74 ± 0.22 2.61 ± 0.34 2.62 ± 0.35 2.53 ± 0.44 2.35 ± 0.47 

16:0 14.93 ± 1.66 15.68 ± 0.47 15.70 ± 0.46 15.82 ± 0.51 15.55 ± 1.06 15.39 ± 1.15 

16:1w7 5.40 ± 0.36 5.29 ± 0.50 5.11 ± 0.76 5.15 ± 0.80 4.77 ± 0.91 4.44 ± 0.92 

18:0 7.08 ± 0.60 7.07 ± 0.57 7.28 ± 0.71 7.18 ± 0.79 7.39 ± 0.69 7.31 ± 0.75 

18:1w9 1.69 ± 0.28 1.67 ± 0.30 1.65 ± 0.30 1.58 ± 0.15 1.58 ± 0.15 1.56 ± 0.13 

18:1w7 2.52 ± 0.21 2.45 ± 0.31 2.52 ± 0.39 2.65 ± 0.57 2.55 ± 0.69 2.67 ± 0.73 

18:2w6 2.82 ± 0.14 2.89 ± 0.24 2.90 ± 0.24 2.89 ± 0.24 3.18 ± 0.74 3.31 ± 0.70 

18:3w3 1.22 ± 0.11 1.19 ± 0.15 1.20 ± 0.16 1.21 ± 0.18 1.20 ± 0.17 1.29 ± 0.24 

18:4w3 1.16 ± 0.26 1.10 ± 0.27 1.02 ± 0.23 1.04 ± 0.28 1.06 ± 0.25 1.07 ± 0.25 

20-MUFA 6.39 ± 0.64 6.38 ± 0.61 6.46 ± 0.56 6.50 ± 0.51 6.41 ± 0.45 6.19 ± 0.58 

20:2 NMI1 4.36 ± 0.75 4.39 ± 0.81 4.34 ± 0.85 4.24 ± 0.99 4.73 ± 1.66 4.56 ± 1.68 

20:4w6 6.64 ± 0.54 6.86 ± 0.87 7.11 ± 0.77 7.28 ± 0.71 7.51 ± 0.95 7.75 ± 0.70 

20:5w3 9.40 ± 1.66 9.00 ± 1.75 8.63 ± 1.33 8.79 ± 1.63 8.47 ± 2.12 8.65 ± 2.07 

22:2w6 1.60 ± 0.40 1.67 ± 0.50 1.75 ± 0.48 1.84 ± 0.35 1.98 ± 0.34 2.00 ± 0.34 

22:2 NMI1 5.61 ± 0.97 5.60 ± 0.96 5.63 ± 0.96 5.74 ± 0.72 6.22 ± 1.22 6.16 ± 1.23 

22:2 NMI2 1.32 ± 0.47 1.35 ± 0.41 1.30 ± 0.44 1.16 ± 0.58 0.92 ± 0.72 0.59 ± 0.58 

22:3 NMI 1.40 ± 0.13 1.38 ± 0.12 1.38 ± 0.12 1.40 ± 0.08 1.47 ± 0.17 1.48 ± 0.18 

22:4w6 2.00 ± 0.52 2.15 ± 0.69 2.30 ± 0.51 2.32 ± 0.48 2.47 ± 0.62 2.56 ± 0.58 

22:5w6 1.43 ± 0.17 1.45 ± 0.21 1.50 ± 0.16 1.50 ± 0.16 1.58 ± 0.29 1.54 ± 0.32 

22:5w3 2.22 ± 0.32 2.11 ± 0.49 2.22 ± 0.53 2.20 ± 0.51 2.13 ± 0.52 2.50 ± 0.95 

22:6w3 13.32 ± 1.41 12.74 ± 2.11 12.65 ± 2.03 12.31 ± 1.83 11.86 ± 1.48 12.43 ± 1.92 

BAME 3.95 ± 0.30 4.03 ± 0.20 3.93 ± 0.39 3.85 ± 0.41 3.73 ± 0.31 3.62 ± 0.31 

SFA 28.74 ± 1.43 29.52 ± 0.78 29.53 ± 0.77 29.46 ± 0.78 29.20 ± 1.30 28.67 ± 1.71 

MUFA 15.99 ± 0.65 15.78 ± 0.87 15.75 ± 0.90 15.88 ± 1.02 15.31 ± 1.46 14.87 ± 1.28 

PUFA 55.27 ± 1.58 54.70 ± 0.74 54.73 ± 0.79 54.66 ± 0.86 55.48 ± 2.39 56.46 ± 2.64 
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Appendix c CAP of the TFA composition of mussels (a) and barnacles (c) on the south coast at upwelling 
(black) and non-upwelling (grey) sites. The open symbols refer to samples from region A (sites 7 and 8), 
while the closed symbols refer to region B (sites 9 and 10). (b) and (d) vectors illustrating the Pearson 
correlations > 0.3 of the FA with the axes of the CAP, with the circle overlay scaled to the maximum 
correlation value and indicating the magnitude of effect.. 
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Appendix d PCA of SPM collected at four sites on the South Africa west coast over the four months of the 
sampling events. PC1 explained 20.2 % of the total variability and PC2 18.0 %. 
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Appendix e Table reporting the locations sampled for the entire study. The table also reports the 

geographical coordinates in decimal degrees, the bio-provinces (west, south or east coast) of interest and 

the number of the chapters where the location is mentioned. 

Site Coordinate Bio-province Chapter 

    

Groenrivier S30.4949 E17.3353 west coast 5 

Doring bay S31.4817 E18.1352 west coast 5 

Lambert's bay S32.0629 E18.1804 west coast 5 

Elandsbaai S32.1903 E18.1922 west coast 6 

Cape columbine S32.4850 E17.5212 west coast 5,6 

Bloubergstrand S33.4819 E18.2746 west coast 5,6 

Llandudno S34.0018 E18.2028 west coast 6 
 
Jongensfontein S34.2530 E21.2034 south coast 2,3,5 

Mossel Bay S34.1048 E22.0920 south coast 2,3 

Brenton S34.0321 E23.1208 south coast 2,5 

St. Francis Bay S34.1028 E24.5023 south coast 3,5 

Port Elizabeth S33.5856 E25.4007 south coast 2,3 

Port Alfred S33.3647 E26.5323 south coast 5 

Kidd's beach S33.0854 E27.4213 south coast 3,5 

East London S33.0118 E27.5521 south coast 3 

 
Mzimvubu River S31.3856 E29.3129 east coast 4 

Mbotyi S31.2501 E29.4758 east coast 4,5 

Mtamvuna River S31.0408 E30.1130 east coast 4 

Pennington S30.2348 E30.4205 east coast 4,5 

Ballito S29.3132 E31.1301 east coast 4,5 

Thukela River S29.1400 E31.2923 east coast 4 

    
 


