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ABSTRACT 

This thesis is divided into two main sections: Part 1 describes the design, and evaluation of the 

accuracy of a new web server – PRotein Interactive MOdeling (PRIMO-Complexes) for 

modeling protein complexes and biological assemblies. The second part describes the 

development of bioinformatics tools to predict HIV-1 drug resistance and support 

bioinformatics research and education.  

Recent technological advances have resulted in a tremendous increase in the number of 

sequences and protein structures deposited in the Universal Protein Resource Knowledgebase 

(UniProtKB) and the Protein Data Bank (PDB). However, the number of sequences has 

increased at a higher rate compared with the experimentally solved multimeric protein 

structures. This is partly due to advances in high-throughput sequencing technology. To fill 

this protein sequence-structure gap, computational approaches have been developed to predict 

protein structures from available sequences. Computational approaches include template-based 

and ab initio modeling with the former being the most reliable. Template-based modeling 

process can be achieved using either standalone software or automated modeling web servers. 

However, using standalone software requires familiarity with command-line interfaces as well 

as utilising other intermediate programs which could be daunting to novice users. To alleviate 

some of these problems, the modeling process has been automated, however, it still has 

numerous challenges.  

To date, only a few web servers that support multimeric protein modeling have been developed 

and even these provide little, if any user involvement in the process. To address some of these 

issues, a new web server – PRIMO-Complexes – was developed to model protein complexes 

and biological assemblies. The existing PRIMO web server could only model monomeric 

proteins. Part 1 of this thesis provides a detailed account of the development and evaluation of 
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PRIMO-Complexes. The rationale for developing this new web server was based on the 

understanding that most proteins function as protein multimers and often the ligand-binding 

sites, and enzyme active sites are located at the protein-protein interfaces. It, therefore, 

necessitated developing capabilities for modeling multimeric proteins. 

PRIMO-Complexes web server was developed using the Waterfall system development life 

cycle model, is based on the Django web framework and makes use of high-performance 

computing resources to execute jobs. The accuracy of the algorithms embedded in PRIMO-

Complexes was evaluated and the results were promising. Additionally, PRIMO-Complexes 

performs comparatively well in relation to other web servers that offer multimeric protein 

modeling. Another unique feature of PRIMO-Complexes is its interactivity. The webserver 

was developed with capabilities for allowing users to model multimeric proteins with an 

appreciable degree of control over the process. 

In the second part of the thesis several other bioinformatics tools are described, for example, a 

webserver for predicting HIV-1 drug resistance, the RUBi protein model repository, and a 

bioinformatics web portal for education and research resources. RUBi protein model repository 

stores verified theoretical models built using various modeling approaches. This enables users 

to easily access models to reproduce and/or further the research. This is described in chapter 5.  

Chapter 6 describes the design and development of the Human Immunodeficiency type 1 

Resistance Predictor (HIV-1 ResPredictor), a web application that employs artificial neural 

networks (ANN) to predict drug resistance in patients infected with HIV-1 subtype B. The 

ANNs and subtype classifiers performed well making this web application potentially useful 

to both clinicians and researchers in this era of personalised medicine.    

Finally, chapter 7 describes a bioinformatics education web portal that equips students with 

information on how to use bioinformatics online resources. Being aware of these resources is 
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not enough without a deeper understanding and guidance on how to apply bioinformatics 

methods to solve practical problems. This web portal was aimed at familiarising students with 

the basic terminology and approaches in structural bioinformatics. Students will potentially 

gain skills to conduct real-life bioinformatics research to obtain biological insights.  
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THESIS OVERVIEW 

The aim of this body of work was to develop: 1) a web server for modeling multimeric proteins, 

2) a repository for protein models, 3) a web server for predicting HIV-1 drug resistance, and 

4) a bioinformatics education web portal.  

This thesis is made up of seven chapters divided into 2 main parts. Research work conducted 

in this thesis is discussed in the first two parts, while the last part consists of the conclusion, 

supplementary data, and references. 

Part 1 is an introduction about proteins, the development of PRIMO pipeline and evaluation of 

the accuracy of this web server to model protein complexes and biological assemblies. This 

part consists of chapters 1-4. Chapter 1 introduces protein structure and function, protein 

structure prediction. Chapter covers specifics of homology modeling and aim of the project 

together with objectives of part 1. Chapter 3 covers the design and development of PRIMO-

Complexes that models multimeric proteins. Chapter 4 covers performance evaluation of 

multimeric protein modeling Python scripts of PRIMO-Complexes.  

Part 2 covers other web servers that are vital in bioinformatics research, and it is made up of 

chapters 5-7. In chapter 5, the RUBi protein model repository is described. This repository 

stores annotated 3D protein structures from our group for easy research reproducibility. 

Chapter 6 describes HIV-1 ResPredictor web server, a web application that employs artificial 

neural networks to predict antiretroviral drug resistance in patients infected with HIV-1 subtype 

B. Chapter 7 follows this up by describing the bioinformatics education web portal embedded 

with protocols to familiarise students with the basic terminology and approaches in structural 

bioinformatics. 

Both parts of this thesis are united under a common theme of tool development for 

bioinformatics research and analysis.   
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PART I: MODELING OF PROTEIN COMPLEXES AND 
BIOLOGICAL ASSEMBLIES 

CHAPTER ONE 

LITERATURE REVIEW: PROTEIN STRUCTURE AND 
PREDICTION 

1 Introduction 

1.1 Proteins 

Proteins are polymers consisting of various amino acids joined by peptide bonds to form 

polypeptide chains. An amino acid is a molecule that contains amine and carboxyl functional 

groups as well as a side chain unique to each amino acid [1]. Proteins are made from twenty 

different standard amino acids some with varying chemical properties. Amino acid sequences 

are held together by different bonds and folded into different three-dimensional (3D) structures. 

Proteins are the functional molecules in living cells and account for 50% of their dry mass [1]. 

Proteins are grouped into three main types according to their shape and solubility. They include 

globular, fibrous, and membrane proteins. Globular proteins have a spherical structure. They 

have hydrophobic amino acid side chains in the interior and hydrophilic side chains exposed 

to the surface [2]. Fibrous proteins have regular linear structures and play a role in matrix 

formation in the cell. Membrane proteins are characterized by hydrophobic amino acid side 

chains exposed to the outside and play a vital role in cellular transport. Fibrous and membrane 

proteins are water-insoluble [3]. Proteins fold into various structures according to the amino 

acid composition which is also correlated with their biological function [4].  

1.2 Protein structure 

Proteins are organized into four different structural levels including primary, secondary, 

tertiary, and quaternary structures (Fig 1.1). 
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Fig 1.1. Protein structure organization levels. The primary structure is defined as the 
sequence of amino acid residues. The secondary structure comprises the α-helices or β-sheets 
conformations which interact to form the spatial arrangement of a protein resulting in the 
tertiary structure. Proteins can interact to form quaternary structures. Image adapted from [5].  

1.2.1 Protein primary structure 

The primary structure of a protein describes the specific linear sequence of amino acids that 

are linked together by peptide bonds to form a polypeptide chain [6]. Every protein is made up 

of unique sequences of amino acids which define its final 3D structure. The polypeptide chain 

comprises an end with a free α–amino group referred to as the N-terminus whereas the other 

end has a free α–carboxyl group known as the C-terminus. Each amino acid consists of a 

carboxylic acid group (-COOH) on one side, an amine group (-NH2) on the other side and a 

unique residual group [1]. The carboxyl acid group bonds with an amine group on an adjacent 

amino acid to form a peptide bond (Fig 1.2). This sequence forms the backbone of the 
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polypeptide. The side chain defines characteristics, including size, polarity, and pH specific to 

each amino acid in the polypeptide chain. The appearance of the secondary, tertiary, and 

quaternary structure is determined by the position of amino acids in the polypeptide chain. 

Fig 1.2. A dehydration reaction to form a peptide bond between two amino acids with R 
and R1 side chains. 

1.2.2 Protein secondary structure 

The linear polypeptide chain twists and folds into regular patterns to form the secondary 

structure. There are mainly two types of secondary structures: alpha helix (α-helix), and beta-

pleated sheet (β-sheets). The alpha helix is formed when the polypeptide chain folds into a rod-

like structure with the backbone on the inside and the side chain on the outside [7]. The alpha 

helix is either left or right-handed. Right-handed alpha helices are the most common types 

found in biological systems. Alpha helices are found in nearly all globular, some fibrous, and 
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membrane proteins. The alpha helices are characterized by backbone dihedral angles (ψ, φ) 

around -60° and -45°.  

The structure is held together by different types of bonds. The bond in alpha-helices is formed 

between amino acids of the same polypeptide chain whereas, for beta-sheets, bonds are formed 

between either the same or different polypeptide chains [8]. The beta sheets can form parallel 

chains through the interaction of adjacent chains facing the same direction or antiparallel chains 

which fold back and forth. 

1.2.3 Protein tertiary structure 

A protein tertiary structure is the 3D structure of the protein that is formed by interactions 

between the side chains of different amino acids in the polypeptide. A protein’s tertiary 

structure is made up of several bonds including hydrophilic and hydrophobic interactions, 

disulphide, hydrogen, and ionic bonds [9]. Hydrophobic interactions play a key role in the 

folding of the polypeptide chain which usually occurs when amino acids with nonpolar side 

chains cluster at the core of the protein [10]. Weak Van der Waals forces, hydrogen, ionic and 

disulphide bonds stabilize the protein. The final shape of the tertiary structure is determined by 

the properties of amino acids forming the polypeptide chain [9]. 

1.2.4 Protein quaternary structure 

Some proteins are made up of more than one polypeptide chain, resulting in a quaternary 

structure. This structure is formed through the combination of multiple (two or more) subunits, 

which are held together by noncovalent interactions [8]. These interactions include disulphide 

bridges, hydrogen bonds, and salt bridges. The subunits in protein complexes can either be 

identical (homomeric proteins) or different (heteromeric proteins) [11]. 
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1.3 Protein function 

The shape of proteins, often referred to as its structure, plays an important role in determining 

the biological functions in proteins. Atoms in protein molecules define the spatial arrangement 

or conformation of the protein thus establishing the biological function [2]. Theoretical, 

experimental, and computational studies indicate that proteins are not rigid but have internal 

collective atomic motions that modulate their biological function [12,13]. The motion of 

macromolecules, specifically proteins, is the crucial link between structure and function. 

Changes in conformation are associated with protein function. Protein motions are involved in 

numerous biological functions including enzyme catalysis [14], cellular locomotion and 

regulation of activity [15]. Knowing the structure of the protein is of utmost importance as it 

enables researchers to predict its function and to design compounds such as drugs that can be 

used to manipulate or influence its characteristics and/or function. 

1.4 Methods for predicting protein structure 

Several techniques exist for predicting the 3D structures of proteins. These can be broadly 

grouped into experimental and computational techniques. 

1.4.1 Experimental techniques for predicting protein structures 

Experimentally determined 3D structures are of great importance since understanding their 

structure helps in the elucidation of their molecular function, the physical origin of protein 

folding, and stability. Furthermore, experimental structures form the basis of computational 

approaches. 

3D macromolecular structures were initially solved using crystallography. Currently, several 

techniques are available for determining 3D macromolecular structures including X-ray 

crystallography, nuclear magnetic resonance, electron microscopy, powder diffraction and 
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fibre diffraction. The main protein structure prediction techniques are discussed in the 

subsequent sections. 

1.4.1.1 Macromolecular crystallography 

Macromolecular crystallography (MX) is the most preferred technique for determining 3D 

structures of proteins and biological macromolecules. This technique is used to obtain the 3D 

molecular structure from a crystal at near-atomic resolution. The first molecular structure 

solved using X-ray crystallography was myoglobin in 1958 [16] followed shortly by a 

discovery that the folding of helices in myoglobin was similar to that of the subunits of 

haemoglobin [17].   

The quality of the protein crystals is the limiting factor for application of protein crystals in 

structure determination. A purified sample at high resolution is induced out of a solution to 

form crystals under the right conditions or precipitation is allowed to occur [18]. Protein crystal 

growth is affected by several factors including varying the initial protein concentration, 

precipitating agent concentration, pH, temperature and presence or absence of co-factors, co-

solvents and impurities [19,20]. Initially, crystallization experiments were performed on a trial-

and-error basis since the aim was to consider all the variables above to yield high-quality 

crystals. However, this process may result to either none, precipitates, microcrystals, or a few 

very tiny crystals generated. The size of the crystals can be improved using various methods 

including seeding, altering protein concentration, and temperature. The resultant crystals are 

required to be least 0.1 mm in the longest dimension for a substantial volume of the crystal 

lattice to be exposed to the X-ray beam. The crystal is then mounted into an X-ray beam which 

is generated from accelerating electrons in a synchrotron storage ring or from electrons striking 

a copper anode [18].  
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X-ray diffraction analysis is performed after obtaining the desired crystal size and ascertaining 

the presence of the macromolecular subunit of interest in the crystals. The distance between 

the crystal and the detector is calculated and adjusted up to a maximum resolution of 1.5 – 

3.0 Å before the collection of diffraction spots. The diffraction image becomes weak at high 

resolution thus a compromise has to be made between reduced quality of diffraction and 

increased resolution [18]. In addition, the unit cell dimensions, crystal system and space group 

have to be determined during diffraction analysis. A unit cell is the smallest repeating portion 

of the crystal lattice that shows the 3D pattern of the crystal. It helps in establishing the spacing 

of spots on the diffraction image. The crystal system is defined by the crystal shape whereas 

the space group is specified by symmetry of the diffraction pattern. Data processing is carried 

out on the first diffraction image. At first, data processing involves accurately determining the 

crystal system, unit cell dimensions and the crystal orientation in the beam. Auto-indexing and 

intensity measurement is then performed on each spot on the image using a program such as 

DENZO[21]. The phase angle cannot be determined directly resulting in a problem. This phase 

problem can be solved by isomorphous method or molecular replacement method [18]. 

The structure factors can be calculated using the fast Fourier transform method [22] according 

to the amplitudes and phases, which results in an electron density map. This map forms the 3D 

contours from which the protein structure is built. In case the quality of the density map is low, 

it can be improved by refinement and then building of the model is performed. The output 

structure is saved in a Protein Data Bank (PDB) format and the quality is expressed as an R 

factor [18].  

Production of diffraction quality crystals suitable for high resolution data collection limits 

determination of accurate macromolecular structures. Protein or macromolecular 

crystallography process can be automated to increase the possibility of structure determination 

in the shortest time possible and improve the quality of the models [23–26]. The automation 
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process sometimes reduces X-ray structure quality and introduces errors as human intuition 

and reasoning is not considered. The curators of PDB database have introduced validation 

procedures to deposit structures over the years [27].  

1.4.1.2 Nuclear magnetic resonance spectroscopy 

Nuclear magnetic resonance spectroscopy (NMR) was implemented as a technique to 

determine macromolecules in the early 1980s [28]. It is now a well-established structure 

prediction method that is able to give high-quality 3D structures at atomic resolution. NMR 

spectroscopy is a spectroscopic technique used for structural studies of proteins both in solution 

and solid state. Solution- and solid-state NMR spectroscopy are highly effective in 

characterizing supramolecular protein assemblies [29,30].  

Several technical advances in the field of NMR including cryogenic probe technology, increase 

in magnetic field strength, reduced dimensionality triple resonance NMR, minimal data 

collection strategies, and automated data analysis lead to high throughput protein structure 

determination [31]. There are four principal components in the NMR method: the nuclear 

Overhauser effect (NOE), sequence-specific assignment of several NMR peaks, computational 

tools, and multidimensional NMR techniques [32].  

NMR has several applications including structure determination of proteins with disordered 

regions [33–36], structural characterization of multi-domain proteins in the absence of crystal 

packing forces [37], and structure determination of proteins without corresponding X-ray 

crystal structures. NMR allows characterization of dynamic regions in the proteins and the 

process requires less data collection time compared with X-ray crystallography given that 

NMR samples are prepared in solution. However, use of NMR for structural prediction has 

several downsides including poor sensitivity, can only be used for macromolecules with 

molecular size limit of about 30 kDa, and the protein sample stability is limited [31]. 
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Improvements to alleviate these challenges are underway. For example, methods to overcome 

the size limitation of solution NMR spectroscopy have been developed. These methods used 

for study of large proteins or complexes include methyl transverse relaxation optimized 

spectroscopy (TROSY) [38], and freezing rotational diffusion of protein solutions at low 

temperature and high viscosity (FROSTY), or sedimented solute NMR spectroscopy [30,39].  

1.4.1.3 Electron microscopy 

Although X-ray crystallography and NMR have led to elucidation of an enormous number of 

structural atomic models, the processes are quite challenging. The electron microscopy (EM) 

method was thus developed to study non-living materials and to provide images of 

macromolecules as detailed as those provided by X-ray crystallography [40–42]. The first 

structure to be solved by EM was reported in 1975 after two-dimensional crystals were 

obtained from the protein but were unsuitable for X-ray diffraction [43]. A major breakthrough 

of EM technology was achieved in the 1980s when liquid ethane was used for preparation of 

samples hence the term ‘cryo’ [44].  

Cryogenic electron microscopy (cryo-EM) technique was introduced to foster the acceleration 

process of protein structure prediction [45]. This technique uses a photograph of frozen 

biological molecules to determine protein structure [46]. Moreover, the technique is limited by 

some challenges including low signal-to-noise ratio (poor contrast of the image) and image 

quality degradation owing to movement of the electron beam [47,48]. Advances in cryo-EM 

have resulted in the production of high-quality structures with high resolutions since protein 

suspensions are frozen on a transmission electron microscope (TEM) support grid. The most 

important step is the formation of the vitreous ice layer which preserves the target in a near-

native state. Cryo-EM approach uses low-electron dose conditions to reduce radiation damage 
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of frozen protein samples before capturing of the images. Moreover, automation of this process 

has led to the production of high-resolution structures [45,49]. 

1.4.1.4 Storage of experimentally determined protein structures 

One of the major achievements in structural biology was the development of the Protein Data 

Bank (PDB) database in 1971 at Brookhaven National Laboratory [50]. PDB is an archive that 

provides free access to experimentally determined macromolecules. The number of deposited 

structures was initially seven and has drastically increased due to advanced technology in all 

aspects including data sharing, MX, and NMR techniques. Increased influx of structural data 

driven by the need to understand the biological functions of macromolecules, and the initiative 

of structural genomics has led to improved strategies for data acquisition, validation, 

organization, and distribution [51].  

PDB database is jointly managed by the Worldwide Protein Data Bank (wwPDB) consortium 

[52,53]. The members of the consortium include the US Research Collaboratory for Structural 

Bioinformatics Protein Data Bank (RCSB PDB; rcsb.org) [51], Protein Data Bank Japan 

(PDBj; pdbj.org) [54], Protein Data Bank in Europe (PDBe; pdbe.org) [55], and 

BioMagResBank (BMRB; www.bmrb.wisc.edu) [56]. RCSB PDB is the core archive that 

houses 3D structural models of proteins, DNA/RNA, experimental data, metadata from 

macromolecular crystallography, and macromolecular complexes with metals and small 

molecules. BioMagResBank (BMRB) core archive houses related metadata from NMR 

whereas another partnership with the Electron Microscopy Data Bank (EMDB; emdb-

empiar.org), houses related metadata from EM and Electron Tomography (ET) [57]. 

As of 11th February 2022, there were 186,934 protein structures in the PDB 

(https://www.rcsb.org/stats/summary) [58]. Most of the 3D structures deposited are determined 

by MX (87.5%), whereas the rest are remainder determined by NMR (7.3%), EM (4.8%), and 

https://rcsb.org/
https://pdbj.org/
https://pdbe.org/
http://www.bmrb.wisc.edu/
https://emdb-empiar.org/
https://emdb-empiar.org/
https://www.rcsb.org/stats/summary
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other techniques (0.1%). The overall trend in the amount of data determined experimentally 

was consistent but in 2016, EM surpassed NMR as the second most popular technique (Fig 

1.3).  

Despite the growing number of high-quality structures deposited in the PDB [51], some have 

errors and present with inconsistencies [59–62]. These errors in predicted structural 

conformation can result in inaccurate findings in structure-based processes that rely on this 

process for example drug design and data-mining studies. Efforts to validate and perform 

quality control of macromolecular structure models are underway [57,63]. 

Fig 1.3. Number of PDB structures released annually. Structures released per year are 
coloured by experimental technique (X-ray – red, NMR – yellow, EM – blue, Multiple methods 
– green). The highest number of structures in the PDB are those determined by X-ray followed 
by NMR, EM, and the use of multiple methods. EM technique overtook the NMR technique in 
2016 becoming the second most common protein structure prediction technique. Image sourced 
from (https://www.rcsb.org/stats/summary) [58] on 05/11/2021. 

 The 3D macromolecules are stored as flat files including the PDB file format [64], the PDB 

data exchange dictionary or macromolecular crystallographic information framework 

https://www.rcsb.org/stats/summary
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(PBDx/mmCIF) format [65,66], and the PDBML/XML format [67]. The size and complexity 

of macromolecules have increased over the years leading to limited use of legacy PDB file 

formats. This limitation was addressed by embracing a new format called extensible 

PDBx/mmCIF data framework though the worldwide Protein Data Bank (wwPDB) presents a 

PDB file format for user convenience [57,63]. 

The ever-growing archive, size, and complexity of the deposited structures have posed 

challenges to the wwPDB consortium. These challenges have been addressed by developing 

and continuously improving the OneDep deposition/validation/biocuration system [68]. The 

wwPDB is developing strategies to enable depositors to make corrections to the PDB files, 

improve validation reports and provide the official digital object identifier (DOI) for each PDB 

structure [57,63].   

1.4.2 Computational techniques for predicting protein structures 

Although advances in experimental protein structure prediction techniques have increased the 

number of protein 3D structures deposited in the PDB [51], these are still few in comparison 

to the number of protein sequences deposited in Universal Protein Resource Knowledgebase 

(UniProtKB) [69]. To shorten this gap, computational approaches to modeling protein 

structures were developed and have been in use since the end of the 20th century [70]. 

Computational approaches use the amino acid sequences to predict the 3D protein structures. 

In 1973, Anfinsen demonstrated that all the information needed by the polypeptide chain to 

fold into a 3D structure is encoded in its amino acid sequence [70]. Physically, the amino acid 

sequence determines the protein’s basic molecular composition, whereas the native structure 

corresponds to the most stable (lowest free energy) conformation. Approaches used to 

computationally model protein structures are broadly classified into two: 1) template-based 



 

13 
 

modeling and 2) template-free modeling approaches. Some composite approaches, however, 

combine the two strategies. 

1.4.2.1 Template-based modeling 

Template-based modeling (TBM) involves the use of a structure as an evolutionarily related 

experimental protein to generate an unknown 3D structure based on a protein sequence. This 

technique depends on the principle that the structure of a protein is more conserved compared 

with its amino acid sequence [71,72]. Illergård and colleagues reported that the protein 

structure is ten times more conserved relative to its sequence [72]. In addition, protein evolution 

studies on sequence-based inference of homology indicate that proteins have similar folds [73] 

with very few exceptions [74].  TBM consists of four sequential steps include: 1) searching for 

suitable templates (known structures) related to the sequence (target), 2) aligning the target 

sequence to the template structure, 3) modeling the target sequence using spatial restraints from 

templates concurrently with loop refinement, and 4) evaluating the model [75]. These steps are 

repeated if the quality of the model is not satisfactory, until no improvement in the model is 

attained. Each of these steps can be done using different programs, techniques, and web servers 

[76]. This technique of modeling protein structures is also known as homology or comparative 

modeling.  

Template-based modeling has a wide array of applications including structure-based drug 

design, identification of active and binding site [77], insight into binding mechanisms [78], 

modeling of substrate specificity [79], analysis of mutations [80,81], and protein-protein 

docking simulations [82] among others [83]. Despite the advantages of using template-based 

modeling, the poor choice of templates (known 3D protein structures), inaccurate alignments 

of target (unknown protein structure) sequences to template sequences particularly low 

sequence identity and incorrect loop folding results into inaccurate structures [84].  
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The most reliable and successful protein structure prediction method is template-based 

modeling [85,86]. The method is, however, less effective when there are no close enough 

homologs. Several template-based protein structure modeling web servers have been 

developed. These ease the cumbersome process of installing and using standalone modeling 

programs. They include PRIMO [87], SWISS-MODEL [88], and HHpred [89] among others. 

This method is discussed in detail in Chapter 2. 

1.4.2.2 Template-free modeling 

Template-free modeling techniques are particularly helpful when no structural analogs to the 

target protein exist in the PDB [51], or when the target protein is partially covered by the 

template structure. Occasionally, when template-based modeling is used, some regions – 

including insertions and loops of the target sequence are not modeled since they are not 

represented in the template structure. In such cases, template-free methods become the best 

option to add those missing regions to build complete protein models. This structure prediction 

built from scratch using the amino acid sequence to predict the most stable protein spatial 

arrangement with the lowest free energy. It is assumed that a protein sequence folds to a native 

conformation that is near the global free-energy minimum [90]. 

These approaches are broadly classified according to the methodologies employed in modeling. 

They include physics-based approaches, fragment-based approaches, secondary structural 

elements-based approaches, and deep learning-based approaches. To date, the fragment-based 

approach is the most accurate strategy for template-free protein structure prediction [91]. This 

approach uses short, contiguous backbone fragments usually 3-15 residues in length extracted 

from proteins with known structures to build models [92,93]. Energy functions and coarse-

grained molecular representations used in fragment assembly do not accurately select native-

like models and the atomistic details required by some applications such as structure-based 
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drug design are not included in the model. Simulation approaches to move the first model closer 

to the native structure are used. This process is called model refinement and it involves an 

accurate energy function along with a strategy to explore the conformation space. The most 

successful conformation strategy applied is the molecular dynamics simulation [94].    

Some of the major challenges faced by the ab initio method are the huge conformational space 

to be searched given the dynamic nature of proteins, and the low accuracy of the protein models 

[95]. Servers for free template modeling have been developed, and include Rosetta [96–98], 

Phyre2 [99], and I-TASSER [100], among others. In CASP13, template-free modeling showed 

the greatest improvement in model accuracy. This progress was driven using deep learning 

techniques to predict 3D contacts as well as inter-residue distances owing to availability of an 

adequate known number of sequences for the protein family [101]. Whereas template-free 

modeling improved in CASP13, it was not the case in CASP14. In CASP14 the models built 

using homologous structure information were slightly more accurate [102].  

1.4.2.3 Hybrid approaches to modeling protein structures 

Advancements in computational protein structure prediction techniques now allow for the 

amalgamation of template-based, template-free approaches and artificial intelligence to predict 

of protein structures. These approaches include Bhageerath [103,104] and AlphaFold [105]. 

As of now AlphaFold is the most recent development in protein structure prediction. AlphaFold 

is a computational approach whose accuracy has been deemed close to that of experimental 

structure accuracy [105]. It uses neural networks and training procedures based on 

evolutionary, geometric, and physical constraints of protein structures to predict single protein 

structures. AlphaFold had the highest accuracy compared to the other participating methods in 

CASP13 [101] and CASP14 [102]. This group participated as AlphaFold and AlphaFold2 

(AF2) in CASP13 and CASP14 respectively. Whereas AlphaFold2 had the highest accurate 
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models in CASP14, the other research groups performed better than AlphaFold in CASP13. 

This was because AlphaFold2 did not submit server models [102]. The AF2 neural network 

models were adapted to predict multimeric protein complex structures. This method was 

referred to as AF2Complex [106]. It does not require paired multiple sequence alignments 

(MSAs) [106]. 

1.5 Assessment of protein structure prediction 

After performing protein structure prediction, it is important to assess the accuracy of these 

structures. Users of these predicted models need to evaluate them and select the best for their 

studies. One of the means that provide an independent mechanism to assess protein structure 

prediction techniques is Critical Assessment of Protein Structure Prediction (CASP).  

1.5.1 Critical Assessment of Protein Structure Prediction (CASP) 

Critical assessment of protein structure prediction (CASP) [101,107–118] is a platform that 

tests and assesses the current methods of modeling protein structure from the amino acid 

sequence to establish their capabilities, progress, and specific bottlenecks. The first assessment 

meeting was held in 1994 and since then, these experiments take place biannually. The core 

principle is double-blinded testing whereby the participants are unaware of (blinded to) the 

solutions to the modeling challenges, and their identity is unknown to the assessors. 

Information on targets whose structures are yet to be solved is collected from the experimental 

community and shared with the prediction community through the prediction center 

(https://predictioncenter.org/). Participants submit their predictions before the experimental 

data is released. The models are then evaluated by independent assessors using a range of 

numerical criteria comparing them to newly determined experimental structures. Different 

domains are tested, including template-based modeling, template-free modeling, contact 

https://predictioncenter.org/
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prediction, and refinement protocols. The performance of all the participating groups is 

summarized and reported at the CASP meeting.  

CASP assesses the progress that has been made and reveals the areas where future efforts 

should be focused. A total of fourteen experiments have been performed so far with the last 

one conducted in 2020. The third last experiment (CASP12) resulted in substantial progress 

mainly in template-based modeling, contact prediction, template-free modeling, and estimating 

the model accuracy [110]. 
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CHAPTER TWO 

A REVIEW OF HOMOLOGY MODELING PROCEDURES 
AND TOOLS CURRENTLY IN USE 

Chapter overview 

Given the widening gap between known protein sequences and their corresponding predicted 

structures, there is interest in shortening this gap to harness the benefits of knowing the 

structural conformation of proteins. Computational approaches now play a pivotal role in 

addressing this problem. One of such approaches is template-based modeling also known as 

homology modeling. Template-based modeling is one of the most effective and widely used 

computational approaches to computationally predict multimeric proteins. The approach is 

used in cases where protein sequence(s) with unknown protein structures have homologues 

with known protein structures. Template-based modeling is either performed using human-

expert guided standalone protein modeling engines such as MODELLER [119], or automated 

modeling servers such as PRIMO [87], SWISS-MODEL [88],  HHpred [89], Phyre2 [99], and  

I-TASSER [100]. Although standalone protein modeling engines are still widely used by 

experienced bioinformaticians, their protocols are not easy to follow for novice users. 

In this chapter, the homology modeling approach is reviewed in detail because part 1 of this 

work focuses on the development of web server that relies on homology modeling to build 

multimeric proteins for unknown protein structures.  

2.1 Homology modeling steps 

The homology modeling process involves four sequential steps (Fig 2.1) including template 

identification, target-template alignment, model building and model evaluation [75].  
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Fig 2.1. A schematic representation of template-based protein structure modeling. Once 
the target protein sequence with an unknown structure is provided, the most suitable 
homologous 3D protein structure is chosen as the template for modeling. Alignment of the 
target sequence to the template sequence(s) is performed, which is used together with the 
template structure to build the model. The model is refined and evaluated. Iteratively 
realignment and rebuilding of the model are performed where necessary. The protein structure 
and alignment images were prepared using the protein viewer (PV) 
(https://biasmv.github.io/pv). 

2.1.1 Template identification 

The most critical step in modeling is the selection of templates [75]. Templates are known 

protein structures that are homologous to the protein with an unknown structure (target). 

Templates are retrieved from the PDB [51] using the target sequence as the query sequence to 

identify known homologous protein structures. Searching for templates can be based on either 

sequence identity between the target and template or physicochemical properties of amino 
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acids such as solvent accessibility and secondary structure. Homolog search can be done using 

a single target sequence (fast-all (FASTA) [120], Basic Local Alignment Search Tool (BLAST) 

[121]) or a profile formed from multiple sequences (Position-Specific Iterated BLAST (PSI-

BLAST) [122], HMMER [123], HHpred [89]). These programs are more effective if the target 

and template proteins share at least 40% sequence identity [124] which is true but with a few 

exceptions [75]. Sequence identity is defined as the percentage of residues that are identical 

between paired aligned sequences. Below the ‘safe zone’ (sequence identity of 35% or higher 

can be safely regarded as having close homology), is the twilight zone which describes a 

threshold (between 20 – 35% sequence identity) at which it is unclear whether two proteins are 

homologous [124].  

The Basic Local Alignment Search Tool (BLAST) [121] is used to identify potential templates. 

It uses substitution matrices to positively score conserved replacements and penalise gaps and 

poorly substituted residues during sequence comparison. BLAST uses heuristics to assess local 

similarity using a word-based approach. Fixed short segments (words) from the query sequence 

are aligned against the sequences in the database, and segment pairs are scored. If the segment 

pair score is greater or equal to a certain set threshold, it is extended until it falls below the 

threshold. As a result, the maximal segment pair (MSP) is calculated to give a measure of local 

similarity of any pair of sequences. MSP is the highest scoring region of two identical length 

segments of two sequences. This enables BLAST to quickly search and return results from a 

huge database. BLAST is faster than FASTA but only generates gap-free local alignments 

hence the release of a gapped BLAST version and the Position-Specific Iterated BLAST (PSI-

BLAST) in 1997 [122]. The gapped BLAST algorithm increased the speed of the initial 

database search since only one ungapped alignment was considered. PSI-BLAST uses the 

significant alignments from BLAST to construct a position-specific score matrix then uses the 

matrix to search the database. 
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Introduction of PSI-BLAST [122] and hidden Markov models (HMMs) [125–127] 

significantly improved efficacy of template search [128]. These methods use the target 

sequence to create a profile-based alignment from homologous sequences with known protein 

structures. In addition, profile-profile methods were introduced where a profile created from 

the target sequence is compared with a profile created from all known structures thus greatly 

improving sensitivity of the search and detection of remote homologs [129,130]. Among the 

programs that use HMMs is HHpred. HHpred is used for remote protein homology detection 

and structure prediction [89]. It uses pairwise alignment of profile hidden Markov models 

(HMM) hence maximizing sensitivity while ensuring increased speed and enhanced alignment 

quality. The HMM is compared against all the HMMs in precalculated databases which also 

include secondary structure information from either PSIPRED [131] or DSSP [132]. The 

database search is done by HHsearch which uses HMM-HMM comparison employing 

position-specific gap penalties [133]. 

2.2.2 Target-template sequence alignment 

After the template(s) are identified, sequences of the target and template proteins are realigned 

as a next step, since the alignment generated during template search might not be optimal for 

template-based modeling [76]. The target sequence is aligned with the template sequence using 

refined alignment algorithms embedded in programs which include; Clustal [134], Multiple 

Sequence Comparison by Log‐Expectation (MUSCLE) [135], Multiple Alignment using Fast 

Fourier Transform (MAFFT) [136], Tree-based Consistency Objective Function for alignment 

Evaluation (T-COFFEE) [137] and Profile Multiple Alignment with Local Structures and 3D 

constraints (PROMALS3D) [138]. These programs align sequences either globally (across the 

entire length) or locally (specific regions) with some incorporating structural information in 

the alignment. More details on these programs are given in Section 2.3. 
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Closely related proteins with over 40% sequence identity have more accurate alignments 

compared with those in the twilight zone [124]. Alignments with low sequence identity (below 

35%) might lead to misalignment errors and might have several gaps [124]. The alignment step 

is crucial in template-based modeling process since any inaccuracies affect the model quality. 

The alignment can be manually edited, if necessary to improve its quality. Sequence alignment 

is not only used in modeling protein structures but also lays a foundation for modern 

bioinformatic studies such as enabling biologists to study conserved regions and reconstruct 

phylogenetic relationships through evolution [139]. 

2.2.3 Model building  

This step follows the target-template alignment step and uses several methods to construct a 

3D model for the target protein. Model building methods include modeling by rigid-body 

assembly [140,141], by segment matching [142–144] and by satisfaction of spatial restraints 

[145–148]. These methods produce models of relatively similar accuracy. Notably, factors such 

as template selection and alignment accuracy that significantly affect model accuracy [76] 

especially if the sequence identity to templates is less than 35% [124]. Some of the programs 

that implement these methods include the SEGMOD program [144] that models protein 

structures by segment matching, the MODELLER program [119] that models protein structures 

by satisfaction of spatial restraints and the COMPOSER program [149], as well the NEST 

[150] program for modeling of protein structures through assembly of rigid bodies. These 

modeling programs have similar performance except for MODELLER which is more effective 

compared with the other programs [151]. 

2.2.4 Model evaluation 

The final model should be assessed for the correctness of the overall structure, errors over 

localized regions and stereochemical properties [60]. Assessment of models is mainly 
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performed using structural comparison methods and/or methods with no reference to the 

structure. Structure comparison methods use two known protein structures to assess the 

model’s accuracy. These methods include the RMSD [152] and the global distance test (GDT) 

[153]. The most commonly used method is the RMSD metric which determines the mean 

distance between corresponding atoms after two structures have been superimposed [154].  

Model assessment can also be performed without reference to the structure and these methods 

include statistical potentials [155,156] and physics-based energy calculations [157]. The two 

methods estimate energy of the model(s). Statistical potential calculations are based on residue-

residue contact frequencies among known protein structures in the PDB [51]. The most popular 

statistical potential calculation methods include z-DOPE [158] and ProSA [159]. Physics-

based calculations are performed using a molecular mechanics force field which aims to 

capture interatomic physical interactions responsible for protein stability in solution [160]. The 

alignment and modeling steps are repeated, if necessary, until the model quality cannot be 

further improved. More details on these programs are given in Section 2.4. 

2.3 Alignment programs  

Several alignment programs have been developed to ease the burden of sequence alignment 

some of which are discussed below. Multiple sequence alignments (MSAs) form the foundation 

for most data analyses including structural and functional analysis. MSAs play an important 

role in elucidating molecular evolution by describing the relationship between nucleotide or 

protein sequences. Sequence alignments can be pairwise or multiple. These programs can 

perform either MSAs or pairwise sequence alignments. 

2.3.1 Clustal programs 

A series of Clustal programs have been developed over the years [134] with the first program 

reported in 1988 [161]. These Clustal series provide robust and portable programs that rapidly 
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perform accurate biologically relevant alignments [134]. Clustal tools perform global 

alignment of protein and nucleic sequences as well as construction of phylogenetic trees. 

Multiple pairwise alignments are built progressively following the branching order of a 

phylogenetic tree. This process is more effective when the sequences are closely related 

because very important information is captured by the time very divergent sequences are added 

to the alignment. In case all the sequences are highly divergent (< 25 – 30% sequence identity), 

then the progressive approach becomes less efficient [162]. Guide trees were initially 

constructed from multiple alignments using the Unweighted Pair Grouping Method with 

Arithmetic-mean (UPGMA) algorithm developed by Sneath and Sokal [161]. Subsequently, 

the Neighbour-Joining method (NJ) [163] was introduced for a robust and accurate alignment 

owing to optimised branch length and weight calculations. The choice of weight matrix varies 

depending on the alignment stage to down-weight very similar sequences and up-weight 

sequences that are divergent. Position-specific gap penalties introduce new gaps in loop regions 

rather than regions that form secondary structure elements to improve accuracy of the 

alignment [162].   

The UPGMA algorithm for constructing guide trees was further improved as an alternative to 

the NJ algorithm. UPGMA is extremely fast on large datasets, however, it clusters long 

branches together in case of differences in evolutionary rates. In addition, an iterative alignment 

option was introduced to increase alignment accuracy. A sequence is removed from the 

alignment at every iteration step and the alignment is realigned as the weighted sum of pairs 

(WSP) score is adjusted. The alignment is retained when the WSP score reduces. Iteration can 

be done either at each step in the progressive alignment or at the final alignment [164]. 

Currently, the latest version of the Clustal series is the Clustal Omega program used to align 

large numbers of sequences. It uses mBED algorithm [165] and HHalign [166] method to 

generate guide trees and accurate alignments, respectively [167].  
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2.3.2 MUSCLE program 

Multiple Sequence Comparison by Log‐Expectation (MUSCLE) uses pairwise profile 

alignment to generate a progressive alignment which is used during the refinement stage [135]. 

Two progressive alignments are generated, one from unaligned pair of sequences using kmer 

distance and the second from aligned sequences using the Kimura distance. A kmer also known 

as a word or k-tuple is a subsequence of length k that occurs in related sequences. Matrices 

produced from these distances are used in the UPGMA [161] method to construct binary trees 

with the Kimura distance tree being more accurate. The Kimura distance tree is refined until 

an improved SP score is attained for the generated new multiple alignments [135]. MUSCLE 

program produces multiple sequence alignments that are on average as accurate as those 

generated by best current alignment programs [135,168]. 

2.3.3 MAFFT program 

Multiple Alignment using Fast Fourier Transform (MAFFT) program was developed to 

perform rapid calculation of large scale MSAs to reduce the computational time with 

comparable accuracy [169]. This tool is used for multiple sequence alignment based on the fast 

Fourier transform (FFT) algorithm. This algorithm converts amino acid sequence to a sequence 

of vectors including the volume and polarity between each amino acid pair. The FFT algorithm 

used in MAFFT is 100 times faster compared with algorithms used in other MSA programs. 

The progressive method and iterative refinement method are also implemented in MAFFT 

program with a few modifications. A guide tree is constructed using UPGMA method [161] 

and sequences are progressively aligned following this guide tree [169].  

Following the initial implementation of MAFFT, new features have been added including the 

PartTree algorithm [170] for improved scalability of progressive alignment and the Four-way 

consistency objective function for improved accuracy of the structural alignment of ncRNAs 
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[171]. Further improvements were incorporated in MAFFT in 2013 including addition of 

unaligned sequences to an existing MSA as a backbone, parallel processing and adjusting the 

direction of deoxyribonucleic acid (DNA) sequences [136]. 

The MAFFT-DASH (Database of Aligned Structural Homologs) web server was developed in 

2019. This incorporates structural alignments in MAFFT MSA. MAFFT-DASH has a higher 

performance compared with the standard MAFFT tool when aligning remote homologs with a 

10-20% improvement. Notably, tools that include structural information in the alignment have 

higher accuracy relative to tools that use purely sequence-based methods [172]. 

2.3.4 T-COFFEE program 

The Tree-based Consistency Objective Function for alignment Evaluation (T-COFFEE) 

program combines both global and local multiple alignments with a progressive alignment 

strategy using the NJ method [163] to construct a guide tree [137]. It computes two primary 

libraries for each pair of sequences using Needleman & Wunsch [173] and the other using 

Lalign [174] for global and local pairwise alignment, respectively. The pairwise sequences in 

each library are weighted according to the sequence identity. The alignments are then combined 

into one library using dynamic programming [137]. 

Quality of MSAs generated by T-COFFEE program was improved by incorporating structural 

information in the alignment of protein sequences and this version is called 3D-Coffee [175]. 

In 3D-Coffee, structures associated with each sequence to be used in the MSA were manually 

added by the user making it cumbersome. Therefore, the Expresso version was developed 

which rapidly and automatically identifies suitable structural templates using BLAST search 

against the PDB database [176].   
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2.3.5 PROMALS3D program 

Profile Multiple Alignment with Local Structures and 3D constraints (PROMALS3D) program 

uses sequence and structure-based information to align sequences [138]. It uses a progressive 

method named PROMALS [177] to cluster and align similar sequences to select 

representatives. PROMALS3D uses PSI-BLAST [122] to search for additional homologs and 

PSIPRED [131] to predict secondary structure to create a hidden Markov model (HMM) [123] 

of profile-profile alignment. Structural and sequence constraints are derived from profiles of 

sequence representatives which are later combined to generate the multiple sequence 

alignment. PROMALS3D produces high-quality alignments of distantly related sequences 

[138].  

2.4 Model evaluation programs 

Assessing the quality of protein models is very vital in protein structure prediction as the 

accuracy of models impacts the areas where they are applied such as structure-based drug 

design. Protein structures determined either experimentally or computationally are prone to 

errors [59]. Determination of these errors is computationally expensive thus indirect methods 

are used to assess the accuracy of some parts or the whole model by either checking the 

stereochemistry or geometrical properties independent of the experimental data [178,179]. 

Several programs have been developed to assess the correctness of experimental and 

computationally designed structures. Some of these programs are described below.  

2.4.1 VERIFY3D 

Verify3D program assesses compatibility of the protein model to its amino acid sequence using 

a 3D profile [180,181]. Every residue position in the sequence of the protein model is 

represented by its environment and a row of 20 numbers (representing amino acids) making up 

the profile. The environment is made up of three features including the buried area of the 
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residue, the side-chain area covered by polar atoms and the local secondary structure. The 3D 

profile score is computed as a sum of all residue positions of the 3D-1D scores for each amino 

acid protein sequence. An improperly modeled segment in the protein model is identified by 

assessing the profile score along with a sliding window scan of 21 residues as shown by low 

scoring regions in a profile window plot [181].  

2.4.2 ProSA 

Protein Structure Analysis (ProSA) uses Boltzmann’s principle [182] to extract force fields 

from known 3D structures in the PDB. These force fields are extracted in the form of the 

potential of the mean force field which is then used to determine incorrect protein structures 

with high energies/z-scores [60,182].  

ProSA-web is an interactive web tool used to detect potential errors in 3D structures of 

proteins. ProSA-web displays two plots one showing the overall quality of scores of the input 

protein structure in comparison with the scores for all the available experimentally determined 

protein structures in the PDB [51]. The second plot shows the local quality energies scores for 

the input structure [159].  

2.4.3 QMEAN 

Qualitative Model Energy ANalysis (QMEAN) [183] uses approaches/methods which rely on 

scoring functions based on: i) analysis of single models based on evolutionary or 

physiochemical properties and ii) information from an ensemble of models for a given 

sequence. The user chooses either QMEAN [184] which calculates both global and local 

quality estimates to select the best model and also highlights the problematic incorrect regions 

or MEANclust [185] which estimates the quality and local conformations of multiple models.  
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A quality score is calculated for each model and these models are ranked or assessed according 

to the calculated quality scores ranging from 0 to 1. QMEANclust uses the best model scored 

by QMEAN to perform the cluster analysis [183]. A model quality score known as the QMEAN 

Z-score was introduced in 2011 [186]. This quality score method relies on the QMEAN 

function [183,184] to determine the quality of protein models as well as to detect errors in 

experimental structures. QMEAN Z-score can be calculated for both single protein chains and 

biological assemblies whereby low-quality models have strongly negative values [186].   

2.4.4 z-DOPE 

z-DOPE is a normalized Discrete Optimized Protein Energy (DOPE). DOPE is a statistical 

potential that is dependent on atomic distance and is calculated from a native protein structure 

[158]. It is based on an improved physical reference state and takes into account the finite and 

spherical shape of the native protein structure [158,187]. Negative z-DOPE scores indicate 

better models. 

2.4.5 PROCHECK 

PROCHECK runs five programs to compute and assess the stereochemical properties of the 

protein model and validates them against the ideal values obtained from the PDB [51]. The 

program checks stereochemistry of the protein structure including those in existence, those in 

the process of being solved and those modeled from known structures. Plots generated by 

PROCHECK give an overall assessment of the structure quality highlighting problematic 

regions. Structures are usually checked for bad contacts, inspected graphically, and through 

use of Ramachandran plot to show residues that lie in the ‘disallowed’ regions (sterically 

disallowed regions for all amino acids except glycine) [188].  
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2.5 Existing automated protein modeling tools 

Several fully or partially automated template-based modeling web servers have been developed 

to circumvent the cumbersome processes of manually installing software or using standalone 

programs. Some of these tools use ab initio modeling methods, others use comparative 

modeling whereas others use a combination of the two modeling approaches. Modeling servers 

include PRIMO [87], SWISS-MODEL [88],  HHpred [89], Phyre2 [99], and  I-TASSER [100]. 

Some of these servers are used for building monomeric proteins whereas others are applied in 

building multimeric proteins. Web servers used for building multimeric proteins are discussed 

below. Although PRIMO web server models protein monomers, it is discussed below since it 

was the basis of this work. 

2.5.1 I-TASSER 

The iterative threading assembly refinement (I-TASSER) [189] server uses an iterative 

hierarchical protein structure modeling approach called threading assembly refinement 

(TASSER) [190]. I-TASSER algorithm was improved through introduction of a new 

knowledge-based force field using neural network hydrophobic potential, a new simple profile-

profile alignment (PPA) threading approach, and a two-step iterative refinement approach 

[189]. 

I-TASSER uses consensus constraints from templates for modeling of proteins. The I-TASSER 

server was tested using CASP7 [191] experiments and it was better than the original version of 

TASSER. All the different I-TASSER versions have been tested using CASP 7 to CASP 11 

data [192]. The findings show no clear improvement of the LOMETS [193] threading programs 

over PSI-BLAST [122]; however, they exhibit progress in structural refinement. This 

improvement is attributed to integration of template-based modeling and physics-based ab 

initio folding simulations [192]. 
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In the CASP13 experiment, the “Zhang-Server” pipeline was renamed to contact-guided I-

TASSER (C-I-TASSER). This version has an iterative multiple sequence alignment (MSA) 

program which improved accuracy of contact-map prediction, extended NeBcon [194] 

capability, and led to a novel contact potential term [195]. 

2.5.2 SWISS-MODEL 

SWISS-MODEL server is an automated server for protein structure homology modeling. It has 

been in use for over 20 years [196]. This server has a user-friendly web interface that allows 

users to search for templates against the SWISS-MODEL Template Library (SMTL). This 

library collects information derived from experimental structures curated in the PDB [51]. 

Models are mainly generated using ProMod-II [197]. Notably, MODELLER [119] is used if 

the model is not satisfactory and their quality is assessed using the local composite scoring 

function, QMEAN [186]. SWISS-MODEL server was extended to model oligomeric structures 

with evolutionary ligands and the accuracy of the models is evaluated by the Continuous 

Automated Model EvaluatiOn (CAMEO) project [198].  

2.5.3 Rosetta 

The Rosetta tool [96,199] was initially developed for ab initio protein structure prediction and 

protein folding [200]. It was later expanded to offer molecular docking, protein design, 

template-based modeling, and determination of protein structures from experimental NMR 

data [201]. Rosetta uses Monte Carlo simulation method to assemble fragments into protein-

like structures. This server performed better relative to other ab initio protein structure 

prediction servers in CASP11 [202]. 

2.5.4 PRotein Interactive MOdeling (PRIMO) 

Between 2016 and 2017 our research group within the Research Unit on Bioinformatics at 

Rhodes University in South Africa (RUBi) developed PRIMO - PRotein Interactive 



 

32 
 

Modeling (PRIMO) to perform modeling of monomeric proteins [87]. PRIMO provides a 

user-friendly interface that allows users to alter parameters during the modeling process. It 

also provides the functionality to model ligands and ions into the target proteins identified 

from template PDB files. The PRIMO modeling process involves three steps including 

template identification and selection, target-template sequence alignment and protein 

modeling and evaluation. PRIMO is registered with (Continuous Automated Model 

EvaluatiOn) project for continuous evaluation [87].    

2.6 Research motivation 

The number of protein structures and sequences deposited in the PDB [51] and UniProtKB 

[69], respectively, keeps growing exponentially. Currently, close to 190 million protein 

sequences have been deposited in the UniProtKB database [69] and there are approximately 

180 thousand structures in the PDB [51]. The increase in protein structure prediction is not at 

par with high-throughput sequencing technology. Consequently, there is a significant 

sequence-structure gap. 

Limitations of experimental structure determination techniques necessitated the development 

of computational approaches to predict protein structures to fill the gap. The most reliable 

computational protein structure prediction approach is template-based modeling [85,86]. 

Template-based modeling can be performed using either human-expert guided standalone 

protein modeling engines or automated modeling servers. Although standalone protein 

modeling engines are still widely used by experienced bioinformaticians, they present 

challenges to novice users. Automated modeling servers are being developed to address some 

of these challenges. Most of these web servers in existence, however, provide limited user 

involvement during the modeling process with a few supporting multimeric protein modeling.  
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Information about the whole protein complex structure is important to understand its 

functionality since most essential interactions happen at the interfaces between one or more 

proteins [203,204]. Ligand binding sites and enzyme active sites are mainly located at the 

protein-protein interfaces hence the need to study the oligomeric protein structure. The web 

servers with the functionality to model protein complexes have limited user involvement for 

the different modeling stages and some take long days to model proteins for even simple jobs. 

This has necessitated the development of PRIMO-Complexes, to complement the first 

PRIMO’s functionalities to cater to the research community whose studies deal with protein-

protein interactions.  

2.7 Research aims and objectives 

The overall goal of part one of this project was to extend the functionality of the PRIMO 

pipeline [87] to model multimeric proteins and biological assemblies. This extension is referred 

to as PRIMO-Complexes, meaning “PRIMO with the functionality to model protein complexes 

and biological assemblies.” To achieve this aim, the work was divided into the following 

specific objectives:  

1. To develop algorithms for identifying templates from the Protein Data Bank (PDB) for 

modeling multimeric proteins. 

2. To develop a mechanism for aligning target-template sequences of multimeric protein 

structures. 

3. To develop algorithms for predicting (modeling) multimeric protein structures from 

PDB templates. 

4. To develop an interactive user interface for inputting protein sequences and visualising 

3-Dimensional multimeric protein modeling results. 

5. To evaluate the accuracy of this pipeline to model protein complexes.  
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CHAPTER THREE 

DEVELOPMENT OF PRIMO-COMPLEXES: A WEB SERVER 
FOR MODELING MULTIMERIC PROTEINS AND 

BIOLOGICAL ASSEMBLIES 

Chapter overview 

Mostly, protein monomers have been modeled, however most proteins function by interacting 

with other proteins and assemble into stable protein complexes. There is need to know the 

structures of protein complexes to understand how they function. Modeling of these proteins 

is either performed using standalone software or automated web servers. Users with little or no 

experience in using bioinformatics software find it hard to install and use this software hence 

resorting to automated web servers. Various protein modeling servers have been developed; 

however, they have some limitations such as limited user involvement in the modeling process 

and long job processing times. This chapter presents the design and implementation of 

algorithms for modeling protein complexes and biological assemblies with an intuitive user 

interface. This web server is termed as PRIMO-Complexes, an extension to PRIMO which 

initially designed to model only monomers. The web application can be freely accessed at 

https://primo-oligo.rubi.ru.ac.za/. 

The chapter provides detailed information about the description of the design, algorithms 

implemented, features and implementation of the web server.  

3.1 Implementation overview 

We developed PRIMO-Complexes as a new platform for modeling multimeric proteins, with 

linkages to the first PRIMO web server, which models only monomers. To ensure smooth 

interoperability and function across both platforms, we developed PRIMO-Complexes using 

technologies similar to the first PRIMO.  The systems development lifecycle (SDLC) approach 

was used to develop PRIMO-Complexes, covering seven stages in the process [205]: 1) 

https://primo-oligo.rubi.ru.ac.za/
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planning, 2) requirements analysis, 3) design and prototyping, 4) software development, 5) 

software testing and evaluation, 6) integration and implementation, and 7) operations and 

maintenance. During the planning stage, the objective of developing PRIMO-Complexes was 

defined and the scope of the existing PRIMO web server was analysed. The specific details of 

requirements for PRIMO-Complexes were also determined. These included technologies, 

programming languages to be used during development and user needs. The system and 

software architectures were outlined as well as the user interface design for PRIMO-

Complexes. After defining the design, the web server was then developed, tested, and 

continuously maintained.  

 

Fig 3.1. A representation of the system development life cycle followed to develop 
PRIMO-Complexes. This process involves seven stages which guide in project management, 
system deployment of the final product and later maintenance. Adapted from [206]. 
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3.1.1 Software development process model 

Among the system development process models, the Waterfall model was the most appropriate 

to use for our needs [207]. The functionality of the PRIMO-Complexes web server to model 

multimeric proteins required a sequential approach since the stages involved can be developed 

as separate phases but in a linear order (Fig 3.2). The stages to accomplish multimeric modeling 

were also well defined from the start and unlikely to change during the process.  

 
Fig 3.2. The diagram shows the Waterfall model phases used to implement the PRIMO-
Complexes web server. Each computing node offers different computing power. Adapted 
from [207]. 

 
3.2 Requirement definition 

An assessment of the initial PRIMO web server was carried out. This web server was 

customised to deal with monomeric proteins from the start to the end of the process. The 

architecture of the web server was evaluated, and this showed that there was no possibility of 

just extending or embedding the functionality of modeling multimeric proteins. The web server 
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was tailored to process and display monomeric protein results. Since PRIMO builds protein 

monomers and the need was to develop a system that models multimeric proteins, the following 

approaches were considered. The user interface, new algorithms to build multimeric proteins, 

the organization of how the results are to be displayed and workflow of the modeling process 

necessitated the development of a separate web server.    

The backend and frontend of the web server were also assessed to ascertain the coordination in 

performing protein modeling. The scripts were studied to understand how they functioned and 

connected with the rest of the system. From this activity, scripts were evaluated to assess which 

ones to reuse, not use and those to adapt and transform to support modeling of protein 

multimers. The assessment showed that protein modeling steps to be followed would be the 

same however to model multimeric proteins, the architecture, and organisation needed to be 

different.  

Evaluation of the existing web servers that model multimeric proteins was done. These servers 

included SWISS-MODEL [88],  Rosetta [96–98] and  I-TASSER [100]. This was because there 

was need to establish how these servers function, their limitations and how to make this new 

system better. It was discovered that these servers had limited user involvement for example 

choosing ligands to model, choosing the most suitable template, and editing target-template 

alignment. Software and development technologies needed to develop PRIMO-Complexes 

such as Django, Django Representational State Transfer (REST) framework were identified. 

3.3 System and software design 

The PRIMO-Complexes architecture can be described in two aspects: the system architecture 

and the software architecture. The system architecture (Fig 3.3 and Fig 3.4) indicates how the 

web server communicates with the High-Performance Computing JMS [208] platform while 

the software architecture (Fig 3.5 and 3.6) represents the actual design of the web server. 



 

38 
 

3.3.1 System architecture for PRIMO-Complexes 

The system is organized and deployed this way to ensure the efficient execution of each 

module. Each computing node offers different computing power. Based on this architecture, 

the PRIMO-Complexes components are deployed such that the most compute-intensive tasks 

being executed on the HPC cluster and the least, on the user's personal computer (browser). 

This architecture eliminates the need to only access PRIMO-Complexes through high 

processor-powered devices. This is possible because the system code is refactored in such a 

way that the browser client program can be handled by the most prevalent personal computing 

nodes in use currently. 

Execution of a single modeling job on PRIMO-Complexes requires the deployment of several 

computing nodes with an HPC cluster at its core (Fig 3.3). As illustrated in Fig 3.3 and Fig 3.4, 

the system is organised in a way that jobs are executed by compute nodes on JMS while the 

fewer manipulations are run by the PRIMO-Complexes web server and web interface 

(browser). At the heart of PRIMO-Complexes is the Job Management System (JMS) [208]. 

This handles all scripts for the PRIMO-Complexes modeling pipeline stages, exposing them as 

services through a RESTful API. The HPC cluster runs the job after it is submitted through the 

PRIMO-Complexes web server to JMS, whereas JMS monitors execution of the job. Once the 

job is complete, JMS notifies the PRIMO-Complexes web server which returns the results to 

the user interface (Fig 3.3).  
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Fig 3.3. System architecture of PRIMO-Complexes – system components. Each 
computing node in JMS offers different computing power. Jobs are submitted through the 
PRIMO web server to the Job Management System (JMS). 
 

The PRIMO-Complexes system organisation allows efficient execution of each module since 

each JMS node offers different computing power. Based on this architecture in Fig 3.4, the 

PRIMO-Complexes components are deployed such that the most compute-intensive tasks are 

executed on the HPC cluster and the least, on the user's personal computer (browser). This 

architecture eliminates the need to only access PRIMO-Complexes through high processor-

powered devices. 
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Fig 3.4. System architecture of PRIMO-Complexes – sub-systems. Several computing 
nodes are required to execute a single job on PRIMO-Complexes. 

3.3.2 Software architecture for PRIMO-Complexes 

The PRIMO-Complexes web interface acts as the link between users and the multimeric protein 

modeling scripts embedded in JMS. When a job is created, an associated file structure is also 

set up on the PRIMO-Complexes server (Fig 3.5). This directory is named using the system-

generated Job_ID and holds sub-directories for every stage of job execution. Each of these 

folders holds data relevant to its corresponding stage on the PRIMO-Complexes modeling 

pipeline. The output generated at every stage is stored in these folders. The output includes 

desired generated files and error logs in case of failure. At the end of each subsequent stage, 

these output files are propagated to the next stage to act as input. 
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Fig 3.5. Software architecture of PRIMO-Complexes. This diagram shows how a potential 
user would interact with PRIMO-Complexes web interface. Once data is input, the interface 
was designed to communicate with the Python scripts on JMS. The scripts on JMS were 
developed to perform homology modeling of protein complexes and biological assemblies 
indicated as 1) template identification, 2) target-template alignment, 3) protein modeling and 
evaluation, 4) Building large macromolecules. 

3.3.2.1 PRIMO-Complexes Django web server design 

The PRIMO-Complexes Django web server design was designed to contain four applications, 

including the Impi, the WebUi, the Users and the Evaluation app. The Impi app is the largest 

application handling most of the burden of calls on the server.  

3.3.2.1.1 WebUi app 

The WebUi app was used to create the user interface on the PRIMO-Complexes Django web 

server. This interface is implemented in form of a web application to be accessed through a 

web browser.  The PRIMO-Complexes Django web server loads the entire web application as 
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a single page – index.html, unlike other web applications that consist of several pages that are 

loaded as a user interacts with the application. In PRIMO-Complexes, this page was designed 

to comprise several view fragments/window frames that, are initially hidden from the user and 

are brought into view selectively as the application changes state. For example, an error dialog 

view fragment will be set to be visible to the user to show an error if it occurs.  

These embedded view fragments, however, do not contain data other than static state 

representation data. For example, the error dialog view fragment is designed not have the actual 

error message, yet it may contain style code and an icon for depicting an error message. Each 

time an error is to be displayed to the user, this same view code is activated and populated with 

the appropriate error message. This design approach eliminates the need for repetitive 

downloading of static view code from the server which saving the user time and bandwidth by 

reducing load time while increasing efficiency. 

State synchronization between the server and client after loading the view markup, style, and 

JavaScript code on the browser is what remains. This is done through calls to the RESTful 

APIs using AJAX. 

3.3.2.1.2 Users app 

We created the Users app to handle user account-related functionality such as authentication, 

account creation, password recovery, and logout in PRIMO-Complexes. The Users app 

exposes its functionality through a RESTful API implemented in the views.py script. The user 

account data are presented to a MySQL database using Django’s ORM.  

3.3.2.1.3 Evaluation app 

We included an Evaluation app which handles model evaluation after the modeling process is 

completed. It consists of a RESTful API exposing only a single endpoint function procheck. 

This function takes the job_id, model_name and number as arguments and uses PROCHECK 
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to evaluate the given model. PROCHECK evaluates the stereochemical quality of a protein 

structure, producing several PostScript plots displaying the overall and residue-by-residue 

geometry [188]. 

3.3.2.1.4 Impi app 

The Impi app in PRIMO-Complexes handles requests pertinent to the core modeling tasks. 

These requests are handled through a RESTful API that accepts and returns data without any 

associated presentation or styling code such as HTML or JavaScript. These endpoint functions 

rely on routines factored out of the views script into a helpers.py script. This is done to reduce 

congestion on the views.py file and as a result, promotes reusability and maintainability of the 

application. Impi manages all jobs on the PRIMO server. For instance, it creates new jobs and 

manages job stages from template identification through alignment stage to the modeling stage 

and/or complex biounit modeling stage.  

Job creation involves instantiating a new job object and populating its attributes with data about 

the new Job. This job object is then presented to the database through Django’s ORM. Job 

object attributes. 

3.4 Implementation and unit testing 

The PRIMO-Complexes’ web interface was designed as a single page, managed by Django 

web framework [209] and Representational State Transfer (REST) framework [210]. The web 

interface communicates with JMS tools via Asynchronous JavaScript and XML (AJAX) calls 

and the web page content is updated using knockoutJS library. After development of every 

stage in the PRIMO-Complexes web server, the functionality was tested to ascertain the output 

and behaviour of the system. Below, I briefly describe the technologies deployed in the 

development of PRIMO-Complexes and tests performed at every stage. 
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3.4.1 Web technologies and software used in PRIMO-Complexes development 

3.4.1.1 Django web framework 

Django [211] is a Python web framework developed to enable rapid web application 

development. It is built on the “Model View Template” (MVT) architectural paradigm which, 

is similar to the more common Model View Controller (MVC) architecture and allows 

separation of concerns in the web application design [209].  

In the development of PRIMO-Complexes, Django was used to reduce on the web development 

time focusing on the application development. Since Django is secure and exceedingly 

scalable, it minimised the chances of making common security mistakes and provide support 

for changes during application development. Applications designed based on MVT 

architectural paradigm are easy to maintain and refactor in case the need arises owing to loose 

coupling. The MVT components are discussed below.  

3.4.1.1.1 Model 

Data structuring is handled by the model in Django through the use of classes that are 

descendants of django.db.models.Model. In the PRIMO-Complexes web server, a MySQL 

database was used, and the subsequent models (layout of database) were created. The models 

were represented by Python classes and each class was mapped to a single database table as 

well as each attribute mapped to a single database table field. Since Django was used, the 

application was automatically given a database-access API (Application Programming 

Interface) thus performing CRUD (Create, Read, Update and Delete) operations. 

3.4.1.1.2 View 

The view is equivalent to the controller in MVC and holds application logic. It is placed 

between the template and the model. In PRIMO-Complexes, the view processes user requests, 
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queries the model for data and passes the data to the appropriate template scripts for 

presentation to the user.  

3.4.1.1.3 Template   

This is equivalent to the view in MVC nomenclature and consists of mainly HTML, JavaScript, 

and CSS scripts. The template component was used to design and develop the web interface of 

PRIMO-Complexes. The template is used for data presentation in PRIMO-Complexes web 

server where the user interacts with interacts with it on the browser.  

3.4.1.2 Django REST framework 

The Django REST framework [210] is a toolkit for developing APIs that conform to the 

Representational State Transfer (REST) [212] architectural style constraints. In PRIMO-

Complexes, the REST architectural style was used to allow communication between the 

backend and World Wide Web (WWW) through Hypertext Transfer Protocol (HTTP). This 

framework was used because Django has an Object Relational Mapper (ORM) which permits 

database interaction in a Pythonic way. 

3.4.1.2.1 HTTP methods 

To provide users with access to the PRIMO-Complexes data, HTTP methods including GET, 

POST, PUT and DELETE were used. Furthermore, the specification of HTTP allows extension 

in a way that does not break already existing infrastructure [213].  

GET: The GET method is used for retrieving information (in the form of an entity) identified 

by the Request-URI. The GET request does not contain any payload except for request 

parameters encoded in the URL itself. 
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POST: The POST method is used to query the origin server to accept the entity enclosed in the 

request as a new subordinate of the resource identified by the Request-URI in the Request-

Line. 

PUT: The PUT method sends a request for the enclosed entity to be stored under the supplied 

Request-URI. 

DELETE: The DELETE method sends a request for the origin server to delete the resource 

identified by the Request-URI. 

Although the REST specification allows for state representation in several formats including 

JSON, XLT, HTML, or plain text, in PRIMO-Complexes, JSON is predominantly used since 

Python objects cannot be sent over the network. 

3.4.1.3 MySQL database 

During PRIMO-Complexes development, My Structured Query Language (MySQL) database 

was used. MySQL is an open-source relational database management system [214] and runs as 

a service on a separate process accessible through a specified port, and the default port is 3306. 

Django supports MySQL in its object-relational mapper (ORM).  Using MySQL database in 

PRIMO-Complexes enables, one to create, update, read and delete data from the database 

through a Python interface without the need to write server query language (SQL) code. 

3.4.1.4 KnockoutJS  

KnockoutJS is a JavaScript library based on Model-View-ViewModel (MVVM) pattern and it 

is used for developing rich and responsive web user interfaces. The user interface of PRIMO-

Complexes was built using Knockout (KO) [215] because supports development of user 

interfaces that require updates on only specific parts of the interface when an underlying data 

model changes. View widgets are bound to data models using the KO JavaScript library such 
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that when the data models are updated, they cause the widgets to update automatically 

reflecting the change. Using Knockout significantly aided the development of PRIMO-

Complexes since the web server involves waiting on long executing tasks whose statuses have 

to be reflected on the user interface seamlessly without the need to update the entire web page. 

Knockout handled this process very well. The underlying data models were updated using 

AJAX. 

3.4.1.4 Asynchronous JavaScript and XML (AJAX) 

Asynchronous JavaScript and XML (AJAX) was used in the development of PRIMO-

Complexes web server to enable asynchronous interaction between a server and client (web 

browser). AJAX also eliminates the need for continuous browser refreshing to display new data 

on a web page. This is done by enabling calls to a web server after a page has already been 

loaded to asynchronously fetch as well as send data to and from the web server. 

3.4.2 PRIMO-Complexes modeling algorithm 

The PRIMO-Complexes modeling algorithms are presented in Fig 3.6. The required input for 

this web server is an amino acid sequence(s) in FASTA format. If the target protein is a 

heteromultimer (consists of different protein chains), amino acid sequences for each subunit 

must be specified. The subsequent process is divided into either three or four steps depending 

on the size of the target protein. These steps are: 1) template identification, 2) target-template 

sequence alignment, 3) protein modeling and evaluation or 4) building large macromolecules. 

Each step allows user intervention, parallel job processing and altering modeling parameters. 
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Fig 3.6. A flowchart shows multimeric protein modeling algorithm incorporated by 
PRIMO-Complexes. The steps involved in multimeric protein modeling are broken down into 
tasks and processes performed by either the user or PRIMO-Complexes. The major steps are 
template identification and selection (run BLAST/HHsearch), target-template alignment, 
protein modeling and evaluation (perform multimeric protein modeling, evaluate multimeric 
protein models), and building large macromolecules. 

3.4.2.1 Template identification 

Homologous template structures from PDB are determined at this stage based on a given target 

sequence file. This step is achieved by a script that was written and named 

get_templates_multimer.py. This sequence file is encoded in FASTA format and may contain 

one or many sequences. The sequences are checked for duplicates before they are processed. 

A target sequence FASTA file containing several sequences is split into different FASTA files, 

each for every sequence. Structures for templates are then iteratively generated for each single 

target sequence. Two template identification methods are availed as options to be used to 

identify templates at this stage, including BLAST and HHsearch. Asymmetric unit structure 
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templates that make up the intersection are determined as well as their corresponding biological 

assembly structures. Homomultimeric structures that are represented more than once using 

differing chain names are removed. Biological assembly information is also determined 

including multiple chains, biological assembly identification (ID), oligomeric state, number of 

existing biological assemblies in the PDB and description. 

3.4.2.2 Target-template sequence alignment 

The biological assembly PDB file selected from the template identification is parsed to extract 

all homologous sequences to the target protein. In the case of repeated identical proteins in the 

biological assembly PDB file, the chain identifiers (IDs) are renamed before aligning 

sequences. These renamed unique chain identifiers are then used when performing alignment 

for clarity at this stage and the modeling stage. The new unique chain IDs with their 

corresponding PDB information is written to a new PDB file to be used during the modeling 

stage. 

Missing residues and non-standard amino acids are included in the alignment as the “X” 

character. An algorithm to compact the multiple sequence alignment into a single paired 

alignment for identical sequences is included in the alignment stage. This was done to remove 

the redundancy of having more paired alignments. Non-identical sequences are presented as 

separate paired alignments. The target-template alignment script 

(align_tempTargetMultimer.py) provides the user with an option to align sequences using 

either Clustal-Omega [167], MUSCLE [135], MAFFT [136] or T-COFFEE [137] program. 

Currently, the PRIMO-Complexes server allows protein modeling using one protein structure 

template. Therefore, multiple sequence alignment is only permitted for homomultimeric 

protein sequences which at times have differing residues. 
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3.4.2.3 Protein modeling and evaluation 

This step uses the target-template sequence alignments and the modified biological assembly 

template structures from the previous step to generate a PIR file for each chain. All the PIR 

files are integrated to form a single PIR file. Alignment sequences are pre-processed to conform 

to the PIR format. Characters that are not recognised by MODELLER [119] in sequences are 

replaced including missing residue characters (“X”) with gap characters (“-”) and modified 

characters with period (“.”) characters. Each target-template alignment pair in the PIR file is 

trimmed so that the target sequence corresponds to the template sequence at each end. 

Biological assembly PDB files are updated with ordered chain IDs as well as ligand 

information for the given chains. This way only ligands selected by the user for the desired 

chains are added. Each template sequence in the PIR file is compared to its corresponding 

extracted sequence from the biological assembly PDB template. If the user selected ligands 

and ions at the template identification step to be modeled into desired chains, ligand 

information is added to the integrated PIR file. The integrated PIR file is updated with start 

chain, start residue, end chain and end residue for sequence and template segment. The ligands 

that are included in the new updated biological assembly PDB file in each chain are identified 

and their positions become the end residues for the template segments in the integrated PIR 

file. The target sequences corresponding to those template segments are then updated with gap 

characters to match the length of the template sequences. These gap characters in every target-

template pair are replaced with period characters to match the ligand positions in the desired 

template chains.  

After preparing the PIR file, a modeling script is created and then run by MODELLER. 

Generated models are then evaluated using normalized DOPE function (z-DOPE score) [158] 

in MODELLER, and the PROCHECK tool [188]. If the selected biological assembly template 

has more than 62 chains, then the modeling step uses the asymmetric unit PDB template to 
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perform modeling of the smallest structural unit (protomer). This process involves proceeding 

to the next stage. 

3.4.2.4 Building large macromolecules 

This step is automatically initialized after the modeling stage in case the protein subunits in the 

biological assembly template used for modeling exceed 62 chains. This step utilizes the user-

selected best model and the biological assembly template selected at the template identification 

stage. A script that uses PyMOL software [216] is used to construct the structures of 

macromolecules. This script creates copies of the best protein model equivalent to the number 

of protomers in the PDB file of the biological assembly and superimposes them onto the 

respective protomers of the biological assembly template then saves the generated structure. 

3.4.3 Molecular and sequence visualization 

Visualisation is a key step during structure analysis. The Protein Viewer - Multiple Sequence 

Alignment viewer (PV-MSA) plugin was embedded to visualize templates and modeled 

protein structures. Additionally, an MSA plugin was incorporated to visualize sequence 

alignments and an NGL viewer to render large macromolecules. The PV-MSA plugin initially 

linked the PV and MSA plugins and was customised for monomeric proteins [87]. PV-MSA 

and MSA plugins were extended in the current study to cater for multimeric protein 

visualization. 

3.4.3.1 PV-MSA plugin wrapper 

PV-MSA is a JavaScript wrapper around the Protein Viewer (PV) [217] and BioJs Multiple 

Sequence Alignment (MSA) viewer [218]. The PV and MSA viewer are based on JavaScript. 

The PV [217] is used for visualization of protein structures whereas BioJs MSA viewer is used 

to visualize and analyze multiple sequence alignment datasets [218]. These viewers are equally 

important in bioinformatics, but they are less versatile. The need to visualize multiple sequence 
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alignment with their corresponding structures led to the development of a PV-MSA wrapper 

by David Brown combining their functionality [87].  It leverages some of the features of PV 

and MSA to offer a single viewer, capable of rendering a protein structure, together with an 

MSA alignment for the template structure sequence.  

Although the initial implementation of PV-MSA featured support for only monomers, 

extensions have been included in the present study to provide support for more complex 

structures. Notably, the current version has a separate alignment for each template structure 

chain sequence to its corresponding target sequence. The resultant viewer interlinks PV and 

MSA in such a way that once a residue of a given template structure chain sequence is selected 

in the PV viewer, the same residue in the corresponding MSA alignment is highlighted and 

vice-versa. In addition, the PV-MSA provides a feature to display and hide protein complex 

structures with their corresponding paired chain alignments. Paired sequence alignments are 

displayed only for matching hit chains from the template structures 

The PV-MSA plugin provides support for different rendering styles such as cartoon, balls and 

sticks, lines, trace, spheres, points, and tubes as well as spin and zoom capabilities. 

3.4.3.2 MSA plugin 

PRIMO-Complexes uses the MSA plugin [218] described above for displaying sequence 

alignments generated by embedded alignment methods including Clustal-Omega [167], 

MUSCLE [135], MAFFT [136] or T-COFFEE [137]. The sequence alignment stage of the 

PRIMO-Complexes pipeline features distinct sequence alignments rendered for every target-

template sequence pair being modeled. In addition, the MSA plugin in the PRIMO version for 

modeling protein multimers has the functionality to cluster identical chains, and present paired 

alignments for different chains to the user. These alignments can further be analysed, edited 

and/or exported before proceeding to the next stage of modeling. 
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3.4.3.3 NGL viewer 

NGL viewer is a web application built with JavaScript and WebGL for visualization of proteins 

and other molecular structures [219]. NGL viewer was embedded into PRIMO-Complexes by 

writing a single JavaScript file containing API methods that are used to create a stage on which 

large macromolecular structures are loaded. Zoom, spin controls and display styles such as 

lines, points, licorice, cartoon, ribbon, balls and sticks, tube and trace were added to this API 

to aid manipulation of the rendered structure. PRIMO-Complexes incorporates both PV and 

NGL viewers for protein structure rendering in its design.  

3.4.4 Multimeric protein modeling Python scripts in PRIMO-Complexes 

The main functionality of the PRIMO-Complexes web server is executed by four PRIMO-

Complexes JMS tools including template identification, target-template alignment, modeling, 

and complex structure modeling which rely on PRIMO-Complexes Python scripts (discussed 

below). Two approaches were used to develop Python scripts for modeling protein complexes 

and biological assemblies under PRIMO-Complexes: Firstly, completely new scripts were 

written specifically for modeling multimeric proteins. Examples of these scripts include 

rmsd_complex.py, rename_biounit_chains.py, ligands_complex.py, and 

determine_bioassemblies_complex.py. Secondly, and where reasonable, some scripts were 

adapted from the first PRIMO web server that models protein monomers [87] and transformed 

them by incorporating capabilities to model protein complexes and biological assemblies. 

Examples of these include Automdel.py, calculate_resolution.py, HHPred_obj.py, and 

RowanFunctions.py. Lastly, some scripts were assessed and needed to be reused as is while 

others were not needed. Examples of reused scripts include Align_PDBs.py, HHPred_obj.py, 

PIR_file.py, rowanPDB_parser.py, ss_add.py, Template.py, and template_fetch_functions.py. 

Scripts that were never used include add_pdb_chain.py, ligand_prep.py, and find_lig_pdbs.py. 
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Details of the functionality of these scripts and transformation made in adapted scripts are 

described below. 

3.4.4.1 Python scripts functionality and modifications made 

Auto_model.py is the main script in the PRIMO-Complexes Python scripts repository. These 

scripts are invoked through Auto_model.py by PRIMO-Complexes JMS tools. The scripts 

work interdependently to process chunks of data at various stages of the PRIMO-Complexes 

modeling web server thus generating a model for the provided target sequence(s).  

The Auto_model.py script was adapted, and modifications made include changes on how to 

fetch the target sequence, addition of a check to ensure that the listed PDB file is an asymmetric 

PDB file with the extension ‘.pdb’ leaving out the biological assembly PDB file. These 

modifications were made because the target sequence file names were stored with a ‘.fasta’ 

extension and the PDB file check was included to ensure that the listed file is an asymmetric 

PDB file. The Auto_model.py script contains a single class named Auto_model. This class 

contains seven methods including the constructor of the class itself, get_templates, 

align_sequences, create_pir, create_model_script, run_model_script and evaluate_models (Fig 

3.7). In addition, this class, directly and indirectly, depends on other classes including 

PDB_parser, PIR_file, FASTA_file, Alignment, MODELLER_script and HHpred. The 

HHPred_obj.py script was modified to update the obsolete.dat file that lists all obsolete PDB 

structures in the PDB repository.  

The Auto_model class’ get_templates method is invoked with one of the two supported 

template identification methods as the sole argument. This method acts on data initially 

specified at object construction time. The constructor specifies the target_sequence file as a 

mandatory argument whereas templates, alignment, and pdb_file_location are specified as 

optional arguments. PDB files were downloaded from the RCSB PDB repository and all the 
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scripts that accessed these files were updated. These scripts include calculate_resolution.py, 

template_fetch_functions.py, RowanFunctions.py, and rowanPDB_parser.py. The 

calculate_resolution.py script was adapted and modified to include PDB structures determined 

by electron microscopy technique which were ignored in PRIMO. A check for “EXPDTA 

ELECTRON MICROSCOPY” was added as well as returning resolution values for these 

structures. This check was included because some multimeric proteins are determined using 

this technique. This script was also failing for some PDB structures which did not have the 

resolution section in the PDB file ending with the term “ANGSTROMS”. This was solved by 

including an exception to return the resolution values. 

The get_templates method generates templates by invoking HHblitz and HHsearch through an 

instance of the HHpred class. This happens when HHpred is specified as the template 

identification method of choice, otherwise, BLAST is executed when BLAST is specified. 

BLAST is invoked through a function called run_and_parse_blast_PDB, specified in the 

template_fetch_functions.py script. HHsuite and BLAST databases were and are periodically 

updated. The template_fetch_functions.py script was adapted and updated with links to the new 

downloaded obsolete.dat file, new downloaded PDB files and updated BLAST data. The 

RowanFunctions.py script was adapted and modified since it contains methods used by other 

scripts to process data including the template_fetch_functions.py, rmsd_complex.py, and 

rowanPDB_parser.py. This script was modified by including a method to call 

http://files.rcsb.org/download/ web page in case http://www.ebi.ac.uk/pdbe-srv/view/files/ 

web page fails to return the desired PDB data. An option is provided to fetch a compressed 

(.gz) PDB file from the locally downloaded compressed PDB files repository in case the PDB 

file is not found in the locally downloaded decompressed PDB files repository. 

The align_sequences method directly depends on the Alignment class. This class is not an 

alignment itself; it rather provides methods that do sequence alignment using any of the 

http://files.rcsb.org/download/
http://www.ebi.ac.uk/pdbe-srv/view/files/
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alignment programs specified in the PRIMO-Complexes modeling pipeline. Methods specified 

in the Alignment class include align_MAFFT, align_muscle, align_Clustal and align_t_coffee 

(Fig 3.7). These methods are all named appropriately to reflect the alignment programs they 

use to perform alignments. 

These alignment methods are executed several times in the case of multimers to generate 

sequence alignments for each of the sequences contained in the target FASTA file with their 

corresponding template sequences. These target-template sequence alignments are used as 

input in the create_pir method of the Auto_model class. This method performs several 

operations on the alignment sequences such as inclusion of gap characters (‘-’) in case of 

missing residues and period characters (‘.’) for modified residues in the alignment sequences 

before including them in the PIR file. 
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Fig 3.7. The PRIMO-Complexes class diagram for backend scripts. All the scripts are 
centred and run by Auto_model.py as the main script. The methods in other scripts were 
designed to be accessed directly or indirectly by the main script to perform the protein 
modeling. 
 

 



 

58 
 

In the current study, the capabilities of the PIR file creation process that was in the first PRIMO 

were significantly enriched to allow for complex structure modeling under PRIMO-

Complexes. PIR files are generated for each of the target-template sequence alignments. 

Notably, MODELLER scripts require that all alignment information be specified in a single 

PIR file, thus these files are integrated to form an integral.pir file.  This integral.pir file contains 

all alignment pairs together with start and end residue information for each of the template 

sequences as specified by the MODELLER program documentation. The resultant integral.pir 

file is then used in the create_model_script method where the MODELLER_script class is used 

to generate a script executable by the MODELLER program [119]. This script is then executed 

through the run_model_script function call. Evaluate_models method is used to evaluate 

models after they are generated by MODELLER [119]. This step involves use of asses_ga341 

and asses_normalized_dope methods of MODELLER’s complete_pdb object to evaluate the 

models. 

3.4.4.2 New scripts to specifically support protein multimeric modeling 

Scripts were written that entirely necessitated the modeling of protein complexes and biological 

assemblies and these include determine_bioassemblies_complex.py, ligands_complex.py, 

rename_biounit_chains.py, and rmsd_complex.py.  

The determine_bioassemblies_complex.py script generates all information about existing 

biological assemblies including chains, how the biological assembly was determined, and 

oligomeric state. It also filters the biological assembly template results to return only those 

associated with the target chain(s). The ligand_complex.py script was written to read ligand 

information from the biological assembly template PDB files. There was also a requirement of 

distinguishing the chain identifiers in case the biological assembly PDB file had repeating 

model segments hence writing a script named rename_biounit_chains.py was needed to sort 
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that issue. This script renames chain IDs up to 62 chains in case they are repeated to avoid 

confusing MODELLER when modeling as well as writing and updating the PDB files with the 

renamed unique chain IDs. There was also need to calculate the RMSD values for the 

multimeric proteins hence writing a script named rmsd_complex.py to solve this. This script 

handles several chain model files and prepares a variable to hold data specific to every chain 

of interest including pdb_atoms, pdb_chain, and model_chain. It then calculates RMSD values. 

3.5 Integration and system testing 

After writing every script, they were tested to ascertain the output and detect bugs which were 

mitigated expeditiously. The scripts were embedded in the web server to catch logical errors 

which cause features to behave incorrectly. The system was rigorously tested by running a 

several protein sequences from either homomultimers or heteromultimers. These were tested 

using different parameters including template identification methods, alignment options, 

number of models to be produced and refinement levels. The output was assessed to be sure it 

is the correct result expected since some bugs do not make the system to crash. Functional 

errors were also tested to handle exceptions in the system. The system was tested with the 

wrong input sequences to check the error handling issues. 

This project was presented to the people in our laboratory and research community during 

monthly meetings and academic conferences for insightful discussions. These discussions 

included modifications to be made, user interface preferences, and expected release time-

frames. System testing was performed by people in RUBi group which involved the alpha 

testing done during the early stages of development specifically after every step in the 

multimeric protein modeling process. System quality including performance efficiency, 

security, and reliability were evaluated. The ability of the system to protect user information 

and data was assessed by ensuring that every user registers and logins to access their accounts 

showing all the previous and current job running. The performance efficiency and reliability of 
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the system was tested by loading several model processing jobs to assess its response time and 

successful runs without experiencing timeouts. After the development, a pilot version of 

PRIMO-Complexes web server was tested to assess if its performance conforms to the user 

requirements in the actual environment. Furthermore, the accuracy of the PRIMO-Complexes 

web server was evaluated to assess how well it models multimeric proteins. More details on 

this evaluation are given in chapter 4. 

3.6 Operation and maintenance 

The system was organised in a way that permits modification, and extension to the code in 

order to ease maintainability in future. Errors reported by the end users are or will be 

implemented after deployment to mitigate new issues and unforeseen bugs that arise.   

3.7 Results and discussion 

In this section, results obtained using the methods discussed above regarding the development 

and functionality of PRIMO-Complexes web server are described and discussed. 

3.7.1 Web server location and access  

PRIMO-Complexes web server is freely available to the public as long as they register on the 

MODELLER website to get an access key to the MODELLER program. PRIMO-Complexes 

web server can be accessed at https://primo-oligo.rubi.ru.ac.za/. 

3.7.2 Description of the final system architecture and functionalities  

PRIMO-Complexes is powered by several technologies including the Django web framework 

[209], and Django REST Framework [210]. The backend scripts were written in Python and 

presented as four distinct tools on JMS including template identification, target-template 

alignment, modeling, and complex structure modeling.  

https://primo-oligo.rubi.ru.ac.za/
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3.7.2.1 PRIMO-Complexes software and system architecture  

PRIMO-Complexes web server was developed using Python as the main programming 

language. The software stack of this web server comprises a rich internet app (RIA) developed 

primarily with JavaScript, a Django web server, and a collection of scripts that are accessed 

through an HPC Job Management System (JMS) as shown in Fig 3.8. 

PRIMO-Complexes RIA was designed conceptually to be a single page that loads once at start-

up and its data is refreshed as required. This design was achieved by incorporating various 

other static code consisting of mainly HTML, JavaScript, and CSS into a single file known as 

index.html. HTML provides the structure; CSS provides the style information and JavaScript 

provides the application logic. The application state transfer between the server and client is 

handled through the RESTful APIs developed on the Django server and AJAX. The client 

application leverages the power of Knockout, adhering to its Model-View-View-Model 

(MVVM) design paradigm. Once data is loaded through an AJAX call, only the model data is 

updated, this change in the model is automatically propagated through knockout’s observer 

mechanism to the view widgets seen by the user on the browser (Fig 3.8). 
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Fig 3.8. PRIMO-Complexes Django web server software architecture. The Django web 
server consists of 5 components (URL routing, Serializers, Views, Templates, and Model 
module) and the MySQL database used for data storage. 
 

The process by which jobs are submitted from PRIMO-Complexes to JMS is illustrated in Fig 

3.9. Once jobs are submitted to the web interface by the user, parameters are processed and 

sent to the PRIMO-Complexes web server. PRIMO-Complexes then compiles the parameters 

into a request it sends to JMS. JMS sends the request together with its authentication details to 

the HPC cluster. JMS monitors the job execution and notifies PRIMO-Complexes once the job 

is complete. PRIMO-Complexes web server then sends the results back to the web interface. 
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Fig 3.9. Execution of jobs submitted to PRIMO-Complexes web server. The figure shows 
the process of submitting jobs via JMS from the PRIMO-Complexes web server. 

3.7.3 Job Input 

The PRIMO-Complexes front-end is a single web page. A single page negates the need to 

reload each page every time a job is completed. The first page allows users to provide details 

about their job and optional input regarding all the modeling stages (Fig 3.10). PRIMO-

Complexes web server is run sequentially providing user flexibility between steps.  

Users are required to provide information to PRIMO-Complexes to necessitate the modeling 

process as described below. Users must provide a MODELLER key since this pipeline uses 

MODELLER [119]. A protein amino acid sequence(s) (one-letter sequence(s) or FASTA 
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format) can be specified directly or by uploading a file to PRIMO-Complexes. Sample 

sequences are provided to the user which they can use to familiarise with or test the web server. 

Optional input is also provided by PRIMO-Complexes. This optional input allows users to 

adjust the template identification, alignment and modeling step parameters. Users can choose 

to identify templates either using protein BLAST [122] or HHsearch [133]. Moreover, they can 

select one of the four alignment options provided, including Clustal-Omega [167], MAFFT 

[136], MUSCLE [135], and T-Coffee [137]. Furthermore, modeling parameters can be 

specified before the process begins. All the input details for each stage are submitted to JMS 

[208], a cluster hosted by the RUBi group. Users are then directed through each step of the 

protein modeling pipeline. If no optional input is specified, then default parameters are used 

for modeling.  



 

65 
 

 

Fig 3.10. PRIMO-Complexes home page. This page contains the login/sign up icon, required 
input section, and optional input section. 

3.7.4 Job handling – process and outputs 

3.7.4.1 Template identification  

Suitable templates are displayed in a tabular form, sorted according to the BLAST [122] or 

HHsearch [133] algorithm ranking (Fig 3.11, Fig 3.12, and Fig 3.13). Information including 

oligomeric state, sequence identities and coverage for each protein chain is displayed for a 

quick overview of the templates. In cases where more than one functional state exists for a 
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given template, these states are displayed in a drop-down menu. The user selects a template 

depending on the intended application and the functional state of the model. For instance, a 

model can be modeled in complex with a ligand or its apo form. In addition to the tabular form, 

an interactive 3D viewer (PV) displays the structure of the selected template. A corresponding 

alignment of only the hit chains is displayed for the selected protein structure to guide the user 

when assessing the best template based on the query coverage. 

PRIMO-Complexes provides the functionality to model biological assemblies in case they exist 

for both homomultimeric and heteromeric proteins. An asymmetric unit is modeled if there is 

no existing biological assembly. This page also provides the user with a navigation feature at 

the top of the page to navigate the different steps of each modeling job. Users have access to 

the previous jobs through the job history, run new jobs and alter parameters in parallel during 

the modeling process. 
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Fig 3.11. Template identification results page for a homomultimeric protein. This figure 
presents the results page after searching for homologous templates to GTP cyclohydrolase 1 
protein. A) The results page displays information on all homologous templates and a PV-MSA 
viewer is presented on the right side. B) The drop-down arrow displays a table for other existing 
biological assemblies. C) The ligand dialog window displays all ligands and ions present in the 
template structure. 

A) 

C) 

B) 



 

68 
 

The user can visualize and select ligands and/or ions for each chain in the protein complex 

template structure to be modeled in the target protein complex. A drop-down is provided in 

case there exists more than one biological assembly with information for each assembly. A 

continue button is activated after the user selects a template structure for use in modeling to 

continue to the next stage of the modeling process. 

 

  

Fig 3.12. Template identification results page for a heteromultimeric protein. The results 
page after searching for homologous templates to deoxyhaemoglobin protein is presented. 

 



 

69 
 

 

Fig 3.13. Template identification results page for a heteromultimeric protein - viral 
capsid. The results page after searching for homologous templates to a poliovirus protein (large 
macromolecules) is displayed. 

3.7.4.2 Target-template sequence alignment  

Sequences for hit chains are extracted from templates and aligned to their homologous target 

chains according to the alignment option chosen by the user (Fig 2.10, Fig 2.11, Fig 2.12). The 

alignment options include Clustal-Omega [167], MUSCLE [135], MAFFT [136] and T-

COFFEE [137]. The chains are renamed before use in the alignment in case the biological 

assembly template does not have unique chain identifiers. An integrated alignment viewer 
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(MSA plugin) was customised in PRIMO-Complexes to accommodate multimeric proteins. 

The MSA plugin allows users to edit and export the alignment. Each alignment pair is edited 

separately for a heteromultimeric target protein. Amino acids and gaps (‘-’) can be added to 

the alignment if they are valid. The sequence alignment can only be trimmed at the edges and 

then validated against the original sequences.  

 

Fig 3.14. Target-template alignment results page for a homomultimeric protein. The 
figure presents the results page after the alignment of the target sequence with the template 
sequences for the selected template (template ID: 1wm9). 
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Fig 3.15. Target-template alignment results page for a heteromultimeric protein. The 
figure shows the results page after aligning the target sequence with the template sequences for 
the selected template (template ID: 1coh). 
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Fig 3.16. Target-template alignment results page for a heteromultimeric protein - viral 
capsid. The results page after aligning the target sequence with the template sequences for the 
selected template (template ID: 4q4w). A fourth step is added for building a large 
macromolecule. 

3.7.4.3 Protein modeling and evaluation  

A PIR file used for modeling is generated from the alignment step. The target protein is 

modeled using MODELLER [119] with the parameters specified in the template identification 

step. Quality of the top models are assessed by z-DOPE score and results are displayed in 

tabular form. Structures and alignment of these models can be visualised using PV-MSA 

viewer (Fig 2.13, Fig 2.15, Fig 2.16). Each model can be evaluated further using other 
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evaluation programs (such as ProSA [159], Verify3D [181], and QMEAN [186]) which are 

provided as links once the dropdown menu is selected. Models are assessed using PROCHECK 

tool [188] provided in the dropdown menu for each model (Fig 2.14).  
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Fig 3.17. Protein modeling results page for a homomultimeric protein. The results for 
modeling the target protein from the selected template (template ID: 1wm9) are presented. 
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Fig 3.18. Protein model evaluation results page for a homomultimeric protein model 
(model004). The protein model evaluation results for model004 using PROCHECK tool are 
presented.  
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Fig 3.19. Protein modeling results page for a heteromultimeric protein. The results for 
modeling the target protein from the selected template (template ID: 1coh) are presented. 
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Fig 3.20. Protein modeling results page for a heteromultimeric protein - viral capsid. The 
results for modeling the target protein from the selected template (template ID: 4q4w) are 
presented in the figure. 

3.7.4.4 Building large macromolecules 

 This step utilizes the best-selected model and the biological assembly template selected at the 

modeling stage and template identification step. This step uses a script that uses PyMOL [216] 

software to construct structures of the large macromolecule. This script superimposes copies 

of the best protein model on the respective protomers of the biological assembly template. The 

structures at this stage are displayed using NGL viewer (Fig 2.17). 
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Fig 3.21. Protein building for large macromolecule for a heteromultimeric protein - viral 
capsid. The results for modeling full protein complex using the best-selected model 
(model001) are displayed. 
 

3.8 Maintenance of PRIMO-Complexes 

PRIMO-Complexes relies on data from the PDB, BLAST and HHsearch which needs to be 

regularly updated. This pipeline is or will be regularly updated to cater for the never-ending 

challenges on protein structure prediction including varying PDB file formats, obsolete data 

support and changing APIs. 

Additional features including multiple template modeling, uploading preferred biological 

assembly template PDB files and specifying chain IDs will be added in future to make the 

process of protein complex modeling more intuitive.  
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3.9 Comparison between the first PRIMO and PRIMO-Complexes 

This section highlights the differences between the first PRIMO and PRIMO-Complexes as 

shown in Table 3.1 below. 

 Table 3.1. Comparison between PRIMO and PRIMO-Complexes  

Comparison features PRIMO PRIMO-Complexes 

Functionality Builds protein monomers Builds protein complexes and 

biological assemblies 

Required Input 

sequence 

Single chain sequence • Single chain sequence for 

homomultimeric proteins 

• two or more chain sequences 

for heteromultimeric proteins 

Job handling process Three homology modeling stages 

(template identification, target-

template sequence alignment and 

protein modeling and evaluation) 

Four homology modeling stages 

(template identification, target-

template sequence alignment, 

protein modeling and evaluation 

and building large 

macromolecules) 

Web interface 

• Visualisation 

• Job history panel 

• Results  

• MSA viewer customised for 

protein monomers 

• PV-MSA viewer customised to 

display a single protein structure 

as well as a single alignment 

pair 

• Job history panel is vertically 

positioned on the left of the 

results section 

• Template identification results 

table contains asymmetric unit 

information such as PDB ID, 

chain, identity, coverage, and 

resolution  

• MSA viewer customised for 

multimeric proteins 

• PV-MSA viewer customised 

to display a multimeric 

protein structure as well as 

several alignment pairs for 

every matching chain 

• Job history panel is 

horizontally positioned on top 

of the results section 

• Template identification 

results table contains either 

biological assembly if 

available or asymmetric unit 
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 information such as 

biological assembly PDB ID, 

asymmetric unit chains, chain 

identities, chain coverage, 

resolution, biounit oligomeric 

state, description and how 

they are determined 

 

 

3.10 Strengths of PRIMO-Complexes web server 

The PRIMO-Complexes web server allows users to interact and be involved in the modeling 

process. Various protein structure prediction web servers that model protein complexes have 

been reported previously; however, PRIMO-Complexes is unique in that it gives the user 

control over the modeling process. Notably, PRIMO-Complexes allows users to alter modeling 

parameters, navigate the different modeling stages and rerun jobs. Moreover, unlike other 

existing web servers, it has functionality for performing protein-ligand complex modeling by 

allowing users to choose ligands for each chain. 

Given that this web server was developed using Django, it is believed that it will be secure as 

well as flexible in case of any changes or further development. PRIMO-Complexes web server 

is also not liable to full system failure since the main tools which perform multimeric protein 

modeling are stored and executed on a separate standalone HPC cluster. The PRIMO-

Complexes web interface was developed as a single page application, with one index page 

loaded once at start-up where its data is refreshed as required. Different sections with 

information are loaded as the user interacts with the website after each stage is completed. 
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3.11 Limitations of PRIMO-Complexes web server 

PRIMO-Complexes has some limitations including the fact that it only models using a single 

template and uses PDB file formats as templates. PRIMO-Complexes at the moment does not 

support multiple template modeling given the complexity involved when using more than one 

multimeric protein. Time constraints and the need to first develop the standard modeling 

process which can be extended later are also reasons not to include multiple template modeling. 

To overcome the limitations of legacy PDB file format, wwPDB resorted to using 

PDBx/mmCIF format. The PDBx/mmCIF format supports large structures, new and hybrid 

experimental structure prediction methods. PRIMO-Complexes cannot model using the 

PDBx/mmCIF format, yet some structures can only be represented in this format hence leaving 

out these structures when identifying templates. 

3.12 Conclusion and recommendations 

We successfully developed a new web server – PRIMO-Complexes – for modeling protein 

complexes and biological assemblies.  The new web server is complementary to the first 

PRIMO web server that models monomeric proteins. 

By using the Django web framework, we ensured that PRIMO-Complexes uses a modular 

architecture that is efficient and easy to maintain. Each component logically executes the 

shared functionality such as user requests, routing the URL requests, configuring data formats, 

and facilitating the data access process. The algorithms we incorporated in the PRIMO-

Complexes webserver provide smooth functionality from the entry of sequences through 

modeling and visualisation of multimeric proteins.  
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CHAPTER FOUR 

EVALUATION OF THE ACCURACY OF PRIMO-
COMPLEXES TO MODEL MULTIMERIC PROTEINS 

Chapter overview 

Following completion of the components of the PRIMO-Complexes web server, we needed to 

evaluate its performance. This chapter focuses on describing the process and results from 

testing the accuracy and performance of the modeling algorithms used to develop the 

functionality of the PRIMO-Complexes web server.  

Overview of the evaluation procedures 

The process of evaluation involved the following steps: 1) generation of a dataset of target 

multimeric protein structures; 2) identification of templates using HHpred; 3) selection of 

protein templates and clustering them into bins; 4) perform sequence alignment; 5) model 

multimeric proteins; 6) Filter and evaluate models. A dataset consisting of PDB files from the 

Protein Data Bank was modeled through all stages of this pipeline including template 

identification, target-template sequence alignment, and protein modeling. In this evaluation the 

fourth stage of the PRIMO-Complexes web server was not included in the testing. This is 

because it involves a different modeling approach. Stages and parameters ran include HHsearch 

for template identification, four alignment options (MAFFT, MUSCLE, Clustal-O, 3D-

Coffee), and modeling using slow, fast and no refinement. Finally, all the generated models 

were evaluated using the z-DOPE score, Root Mean Squared Deviation (RMSD), Global 

Distance Test – High Accuracy (GDT - HA) score, Template Modeling (TM) score, and Local 

Distance Difference Test (lDDT) score. 

. 
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4.1 Testing of multimeric protein modeling scripts embedded in PRIMO-
Complexes  

Benchmark tests were done to assess the performance of multimeric protein modeling scripts 

as well as to troubleshoot errors in JMS tools that execute the core functionality of the PRIMO-

Complexes. The JMS tools include template identification, target-template alignment, 

modeling, and complex structure modeling. The multimeric protein modeling Python scripts 

were automatically run without user intervention. Python scripts were written to bypass 

frontend languages such as JavaScript and NodeJS to fetch and move inputs from one step to 

another through the testing pipeline. Testing was performed using protein complexes as the 

target proteins. Fig 4.1 summarizes the steps used to perform the benchmark tests.  
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Fig 4. 1. A workflow diagram for testing the multimeric protein modeling Python scripts 
of PRIMO-Complexes. Overview of the steps followed when modeling known multimeric 
protein targets from the PDB.   

4.1.1 Dataset generation and template identification 

Target protein complexes with known protein structures were randomly fetched from the PDB 

database [51] to be used in the testing process of backend scripts. The dataset consisted of 

homomeric and heteromeric protein complexes. As of the year 2020, the total number of 

structures deposited in the PDB was 172,988 and of those 151,612 were protein-only structures 

Target multimeric protein structures  

Homomeric or heteromeric template 

structures 

Target-template combinations in sequence identity 

bins 

Target-template alignments 

Generate a dataset of 

target structures  

Identify templates 

using HHpred 

Select protein templates 
and cluster them into bins  

Perform sequence 

alignment  

PDB 

20 - 29% 30 - 39% 40 - 49% 50 - 59% 

60 - 69% 70 - 79% 80 - 89% 

Clustal-O  MAFFT 3D-Coffee MUSCLE 

Model multimeric 

proteins 

Filter and evaluate 

models  

Filtered protein models 

Protein models 
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[58]. At the time of testing (June 2020), only protein structures with an existing biological 

assembly were considered (Table 4.1) before finally deciding on the oligomeric states to 

consider in this work. The total number of deposited biological assemblies in the PDB were 

55,832 homomeric proteins, 19,805 heteromeric proteins and 71,443 monomers. 

Table 4.1. Summary of the first twenty protein oligomeric states for biological assemblies 
available in the PDB as of June 2020. 

Oligomeric state Homomultimers Heteromultimers 

Dimer (2) 35,189 9,773 

Trimer (3) 4,364 2,876 

Tetramer (4) 9,698 3,116 

Pentamer (5) 761 283 

Hexamer (6) 2,752 1,441 

Heptamer (7) 129 127 

Octamer (8) 813 428 

Nonamer (9) 34 174 

Decamer (10) 337 90 

Undecamer (11) 25 33 

Dodecamer (12) 619 536 

Tridecamer (13) 14 71 

Tetradecamer (14) 124 84 

Pentadecamer (15) 22 41 

Hexadecamer (16) 82 108 

Heptadecamer (17) 1 15 

Octadecamer (18) 57 85 

Nonadecamer (19) 2 11 

Eicosamer (20) 22 65 
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Two sets of target protein complexes were used including homomultimers and 

heteromultimers. From the table above, it was decided that dimers and tetramers be used since 

the data was large enough to randomly sample from. Oligomers consisting of only protein 

macromolecules were downloaded and used in this evaluation (Table 4.1). Several filters were 

employed to aid the cleaning of the downloaded PDB protein structures. This was done to 

eliminate: 

1. Proteins with chains whose length is less than 20 residues  

2. Protein-DNA bound complexes 

3. Proteins whose entries are divided between multiple coordinate files due to the 

limitations of the PDB file format for example TAR files containing a collection of 

minimal PDB files  

4. Proteins in the format of mmCIF, and PDBx 

5. Proteins marked as hetero-oligomers due to interactions with short peptides (below 20 

amino acids) or antibodies  

6. Proteins with existing biological assemblies  

A Python script was written to parse sequences from randomly chosen PDB files in every 

chosen oligomeric state. HHsearch option was run to identify homologous multimeric proteins 

to these sequences. The HHsearch method was used because it is good at detecting remotely 

related protein structures [133]. Template structures were returned including biological 

assemblies that correspond to asymmetric unit template structures. Asymmetric unit PDB files 

are returned in case no biological assembly was found. An intermediate Python script was used 

to select only templates with the desired oligomeric state (homodimers, homotetramers, 

heterodimers, and heterotetramers) for the dataset being run. Since some proteins exist in more 
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than one functional state, the first biological assembly was selected if it matched the desired 

oligomeric state otherwise the next biological assembly was selected if it satisfied the criteria. 

4.1.2 Clustering templates 

The average sequence identity was recorded for each target-template combination for 

homomeric and heteromeric proteins during the template identification step. In this work, 

target-template sequence identities from 20% to 89% were considered. A total of seven 

sequence identity bins in intervals of 10 were created and used. Target-template combinations 

were binned according to these sequence identities. The binning process was repeated for 

homodimers, homotetramers heterodimers, and heterotetramers with 1285, 794, 450, and 150 

different protein multimeric structures per bin respectively. Total target-template combination 

protein structures in all the seven bins included 8,995 homodimers, 5,558 homotetramers, 3,150 

heterodimers, and 1,050 heterotetramers.  

4.1.3 Target-template sequence alignment and model generation 

Sequences for each target-template combination entry in each bin were aligned using four 

different programs embedded in PRIMO-Complexes. These include Clustal-Omega (Clustal-

O) [167], MUSCLE [135], MAFFT [136] and 3D-Coffee [175]. Some Python scripts that 

mimic how these alignment programs work were written by Rowan Hatherley in the first 

version of PRIMO that models monomeric proteins [87]. A script was written to mimic how 

the MAFFT program runs MAFFT-homologs using a local version of protein BLAST [121]. It 

retrieves 50 closely related sequences to both the target and template sequences. Another script 

to mimic the Expresso [176] option in T-Coffee alignment program was also written. Expresso 

runs 3D-Coffee [175] which incorporates structural information in the alignment. Normally 

Expresso runs BLAST to identify homologous protein structures to be used by 3D-Coffee. 

However, in this work, Expresso uses template structures generated at the template 
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identification step excluding the target PDB. Alignments for each target-template combination 

entry were used by the multimeric protein modeling script to generate models. This script uses 

MODELLER [119] to build protein models and in this evaluation 10 models were generated 

per run using the very slow refinement option.   As explained in detail in chapter 3, new scripts 

were written to perform multimeric modeling, and these include four tools run and executed 

by JMS namely template identification, target-template alignment, modeling, and complex 

structure modeling. These JMS tools rely on other PRIMO-Complexes scripts stored in the web 

server. Some of these Python scripts were completely written from scratch, others were adapted 

and modified while some were reused. Details of these scripts are described in chapter 3 above.  

4.1.4 Normalizing and filtering protein models  

Each target-template combination had differing lengths when modeled using the different 

alignment programs discussed in section 4.1.3 above. These differing lengths were due to 

sequence trimming during the PIR file preparation step. These trimmings are done at each end 

of each sequence to ensure that the targets being modeled have corresponding template sections 

to be modeled from. Models were normalized before being filtered. Model normalization 

involved trimming PDB files in each modeling set (target-template combination) to the longest 

common segment across similar chain identifiers.  

Models went through a series of filtering steps as shown in Fig 4.2. After performing target-

template alignment using four different alignment programs as described in section 4.1.3 

above, some models fell outside their assigned sequence identity bins. The average sequence 

identity was calculated for both homomeric and heteromeric proteins. Whereas homomeric 

proteins have identical sequences, some chains may have mutated or missing residues thus the 

need to calculate the average for all sequence identities. Sequence identities were calculated 

from PIR files used during the modeling step. Initially, clustering each target-template 
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combination into different sequence identity bins depended on the target-template alignment 

generated during the template identification step. Only target-template combinations whose 

alignment for all the four alignment programs fell in the same bin were retained. 

 

 

Fig 4.2. A workflow diagram showing steps followed to filter protein models. Filtering was 
performed before assessing models for each oligomeric state 
 

The average target coverage for each target-template combination was also calculated. The 

target-template combination was included if the average coverage was at least 70% of the target 

sequences for all four alignment options. Finally, the calculation of the Root Mean Squared 

Deviation (RMSD) between each target and template PDB file was performed using BioPython 

to remove outliers in each sequence identity bin. This was done due to conformational changes 

between the target and template protein complexes where RMSD could not be used to assess 

the modeling accuracy. 
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4.2 Evaluation of the protein models 

Evaluation of models was performed to assess their accuracy using different evaluation metrics. 

Key outcomes measures used in the evaluation: 

1. z-DOPE score 

2. Root Mean Squared Deviation (RMSD) 

3. Local Distance Difference Test (lDDT) score 

4. Template Modeling (TM) score 

5. Global Distance Test – High Accuracy (GDT - HA) score 

A z-DOPE score was calculated for each model for all alignment options in every sequence 

identity bin to generate the top model for each target-template combination. The top model and 

target PDB structure were then compared using distance-based measures including RMSD 

[152], Local Distance Difference Test (lDDT) score [220], Template Modeling (TM) score 

[221], and Global Distance Test – High Accuracy (GDT - HA) score [153]. Among these 

distance-based measures, RMSD, TM-score and GDT-HA score are global measures whereas 

lDDT score is a local measure.  

RMSD is the most commonly used metric and measures the mean distance between 

corresponding atomic coordinates for two superposed structures [152]. RMSD values range 

from 0 to ∞. This measure is associated with some limitations including dependence on the 

protein length and is dominated by loops. To solve these problems, the TM-score was 

introduced as another similarity score.  

TM-score is a metric measure that assesses similarity of the topological arrangement of protein 

structures. The TM-score value lies between (0,1) where 1 indicates that two structures are a 

perfect match [221].  



 

91 
 

Another global measure is the GDT score that quantifies the number of atoms in the model that 

can be superposed with corresponding structure atoms within stipulated thresholds. The GDT-

HA score ranges from 0% to 100%. In this study, the GDT-HA score calculated is an average 

of conserved distances over thresholds of 0.5, 1, 2 and 4 Å [153].  

lDDT is a local measure that assesses how well the local atomic interactions in a reference 

protein structure are reproduced in the predicted structure being evaluated [220]. The lDDT 

score ranges from 0 to 1 but in this work, the scores were converted to percentages (0 to 100) 

after the calculation. RMSD, TM-score and GDT-HA score calculations rely on the 

superposition technique to measure similarity whereas lDDT score is superposition-free.  

Before calculating the lDDT, TM, and GDT-HA score, all the chains for each best model and 

target protein complex were sequentially renumbered from the first to the last chain in the PDB 

file. The GDT-HA and TM-scores were calculated using TM-score software 

(http://zhanglab.ccmb.med.umich.edu/TM-score/) and the lDDT score was calculated using 

OpenStructure/lDDT software (http://swissmodel.expasy.org/lDDT). 

4.3 Additional assessment and evaluation performed 

4.3.1 Remodeling target proteins and assessing PDB structures 

Each target protein was remodeled using its very PDB structure as a template. This was done 

to represent ideal modeling conditions and get an idea of the error produced by MODELLER 

[119]. These models were then evaluated by calculating z-DOPE scores. The target and 

template PDB structures were also evaluated by calculating z-DOPE scores. 

4.3.2 Testing model refinement parameters 

MODELLER [119] provides other refinement options apart from very slow refinement. 

Performance tests were done on these model refinement options including none and fast 

refinement. Final datasets after filtering and evaluating models were used to perform model 

http://zhanglab.ccmb.med.umich.edu/TM-score/
http://swissmodel.expasy.org/lDDT
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refinement tests. The refinement level in the modeling script was altered to either fast 

refinement or no refinement (none). The modeling script used similar MAFFT PIR files that 

were generated during the alignment step in benchmark tests to perform modeling. Models 

generated from none, and fast refinement options were evaluated together with those initially 

modeled with very slow refinement. 

4.3.2.1 Evaluation of model refinement results 

A z-DOPE score was calculated for each model for all the alignment options in every sequence 

identity bin to generate the best model for each target-template combination. The best model 

and target PDB structure were then compared to generate the RMSD values.  

4.4 Continuous assessment of the pipeline 

The Continuous Automated Model EvaluatiOn (CAMEO) project provides an independent 

evaluation of structures generated by protein structure prediction web servers. This evaluation 

is done based on the criteria established by the protein structure prediction community [198]. 

To integrate PRIMO-Complexes with CAMEO [198], an endpoint was created in the jobs view 

script of the PRIMO-Complexes Django web server [87]. This endpoint handles requests from 

the CAMEO [198] server, it un-marshals the request payload and encodes data in a format that 

is consumable by the PRIMO-Complexes modeling web server. This endpoint was further 

extended to handle targets constituting multiple sequences. PRIMO-Complexes web server 

was designed to allow CAMEO perform testing in four different versions including 

combinations between template identification options (BLAST, HHsearch) and sequence 

alignment (3D-Coffee, Clustal-Omega) programs. The setup in PRIMO-Complexes was done 

and completed and will be registered with CAMEO to begin continuous assessment. 

PRIMO-Complexes requires that every job handled be associated with a user account, as such, 

a dummy user account was created to represent CAMEO requests. Once a request is received 
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on the CAMEO endpoint, this user data is loaded and then associated with the newly created 

job object before passing it to the pipeline. CAMEO jobs are handled only in automatic mode; 

here no input is required from the user as stage transitions are performed. Once the final models 

are generated, the CAMEO system is contacted through the email provided in the request 

payload. 

4.5 Case studies 

To demonstrate the performance of PRIMO-Complexes when compared to other modeling web 

servers – SWISS-MODEL [88], and Robetta [201], three case studies were performed. These 

included modeling of: GTP cyclohydrolase I (GTP-CH-I) protein from Escherichia coli 

(accession number: P0A6T5) as a multimeric protein (biological assembly) with ligands; 

superoxide dismutase (hSod1) protein from Homo sapiens (accession number: P00441) with 

ligands; and hemoglobin subunit alpha (alpha-globin) from Homo sapiens (accession number: 

P69905). The SWISS-MODEL web server was run without user intervention and allowed it to 

select the best templates. The Robetta web server was run using the option to run only 

comparative modeling. The characteristics of these servers were described in chapter 2. 

For GTP-CH-I, two modeling sets were chosen from PRIMO-Complexes; 1) Using biological 

assembly template 1wm9 (homodecamer), which is in complex with zinc ion for chains A, B, 

C, D and E; 2) Biological assembly template 1wur (homodecamer) with its inhibitor and metal 

binding. Chains A, C and D are in complex with 8-oxo-2'-deoxyguanosine-5'-triphosphate 

(PDB ID: 8DG) whereas chains A, B, C, D and E have zinc ion binding. Both were aligned 

using 3D-Coffee without edits to the alignments.  

For hSod1, two modeling sets were chosen for PRIMO-Complexes; 1) Using biological 

assembly template 2xjk (monomer), which is in complex with a copper (II) ion and zinc ions. 

This was aligned using the MUSCLE program and no further intervention; 2) asymmetric unit 
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template 1dsw (monomer), which is in complex with copper (II) ion and zinc ion. This was 

aligned using the 3D-Coffee program and no further intervention.  

For alpha-globin, one modeling set was chosen, using biological assembly template 1aby 

(heterotrimer), which is in complex with cyanide ion and protoporphyrin IX containing Fe. 

This was aligned using the 3D-Coffee program and no further intervention. All models were 

assessed using ProSA [159], and Verify3D [181], QMEAN [186], PROCHECK [188] and z-

DOPE score [158]. 

4.6 Results and discussion 

4.6.1 Protein modeling and filtering models 

To evaluate algorithms used in PRIMO-Complexes, a study was performed to model protein 

complexes with known structures from the PDB [51]. Templates with sequence identities 

ranging between 20% to 89% were selected along with four different alignment approaches. 

After protein modeling, these models were filtered as described in section 4.1.4. The final set 

included 4,464 dimeric (Fig 4.3A) and 2,940 tetrameric (Fig 4.3B) modeled targets for 

homomeric proteins (Fig 4.3) whereas 858 dimeric (Fig 4.4A) and 244 tetrameric (Fig 4.4B) 

modeled targets were identified for heteromeric proteins (Fig 4.4). Given that 10 models were 

generated for each target-template combination entry (target), a total of 178,560 (dimers) and 

117,600 (tetramers) models for homomeric proteins as well as 34,320 (dimers) and 9,760 

(tetramers) models for heteromeric proteins were evaluated. 
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Fig 4.3. Final homomultimeric targets that remained after performing the filtering steps. 
A) The homodimer dataset reached 4,464 final targets. B) The homotetramer dataset reached 
2,940 final targets.  
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Fig 4.4. Final heteromultimeric targets that remained after performing the filtering steps. 
A) The heterodimer dataset reached 858 final targets. B) The heterotetramer dataset reached 
244 final targets.  
 

After target-template alignment was performed using four different alignment programs as 

described in the methods section, some models fell outside their assigned sequence identity 

bins (Fig 4.5). This realignment of the target and template sequences produced different results 

thus retaining only target-template combinations whose alignment for all the four alignment 

programs fell in the same bin. 
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Fig 4.5. Box plots showing the average target-template sequence identities for each target-
template combination per sequence identity bin. Sequence identity for each generated model 
was calculated for four oligomeric states: A) homodimers B) homotetramers C) heterodimers 
and D) heterotetramers. The average sequence identities were calculated from the PIR files 
used during the modeling step according to their respective sequence identity bins and 
alignment program. Sequence identity outliers are shown for every alignment in its respective 
bin before they were filtered.  
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98 
 

 4.6.2 Evaluation of models using z-DOPE score 

The quality of these models was assessed using MODELLER’s z-DOPE score, results from 

which are shown in Fig 4.6. When using the z-DOPE score to evaluate the quality of models, 

a score of −1.0 and below is desired as these models are considered native-like [222]. After 

testing, models from 50 – 69% (Fig 4.6A), 40 – 49% (Fig 4.6B), 60 – 69% (Fig 4.6C), and 40 

– 49% (Fig 4.6D) bins and above for homodimers, homotetramers, heterodimers and 

heterotetramers dataset respectively were on average below this cut-off. The homotetramers 

and heterotetramers dataset had at least 40% sequence identity, indicating that these protein 

complexes had similar structures [75]. However, this is not always the case since some proteins 

with high sequence identities have different structures and functions [223]. 
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Fig 4.6. The z-DOPE score results for testing the multimeric protein modeling Python 
scripts for the four oligomeric states used in this work. Target-template combinations were 
divided into bins based on their average sequence identities. The ‘Remodel’ data represent the 
target protein complexes remodeled using their structures as template structures. The ‘Target 
PDBs’ and ‘Template PDBs’ data represent the quality (z-DOPE score) of the target and 
template protein complexes used. Data shown above are for (A) homodimers, (B) 
homotetramers, (C) heterodimers, and (D) heterotetramers. 

 

A. B. 

C. D. 

Clustal-O MAFFT MUSCLE 3D-Coffee Remodel Target PDBs Template PDBs 
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Generally, models for bins below 40% sequence identity for all oligomeric states were of low-

quality; however, the different alignment programs performed differently. For all the 

oligomeric states tested, 3D-Coffee outperformed the other alignment programs for the 20 – 

29% and 30 – 39% bins except for the heterotetramer dataset where this happened for only the 

20 – 29% bin. This was expected since 3D-Coffee incorporates structural information in the 

sequence alignment thus improving alignment quality [138]. For bins with high sequence 

identities (>40%), improvements were less prominent since structural information is most 

valuable for improving alignments of remote sequences.  

PDB structures of the targets and templates were included in z-DOPE score calculations to 

evaluate the quality of the structures that were used during modeling. On average, models with 

sequence identities equal to or above 70% showed better results compared with the quality of 

target and template structures used for all the oligomeric states.  

Additionally, each target protein was remodeled using its very structure as the template to 

represent ideal conditions i.e., 100% sequence identity. None of the models matched the quality 

of remodeled target protein complexes except the heterotetramer dataset. For the 

homomultimeric dataset, models in bins with sequence identities from 70% and above on 

average matched the quality of remodeled targets. Heterodimeric models in the bins with 

sequence identities from 80% and above on average matched the quality of the remodeled 

targets. On the other hand, heterotetrameric models in the bins with sequence identities from 

80% and above showed similar quality as the remodeled targets and target structures.  

Assessment of multimeric protein modeling Python scripts was done by modeling protein 

targets from the PDB [51] so that the models can be compared to their corresponding known 

structures. This was done by evaluating RMSD and other additional metric parameters. 
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4.6.3 Evaluation of protein models using RMSD and other additional metric parameters 

For all the oligomeric states, protein models with low sequence identities had high RMSD 

values except for models generated after aligning using the 3D-Coffee option for homodimers 

(Fig 4.7A), homotetramers (Fig 4.8A), and heterodimers (Fig 4.9A). For bins in the 60 – 69% 

(homodimer), 50 – 59% (homotetramer and heterotetramer) range and above, had RMSD 

values within 2 Å of the target PDBs except for the heterodimer dataset whose RMSD values 

were within 2.5 Å of the target PDBs for the 60 – 69% range and above. In all the oligomeric 

states, a similar trend was observed for the RMSD values and those for the z-DOPE score 

assessment. Models with lower z-DOPE scores were found to correspond to lower RMSD 

values [224] as well as high sequence identity [225]. Using RMSD as a quality assessment 

measurement had some limitations since some target and template PDB structures were present 

in different conformations leading to very high RMSD values. This was solved by removing 

outliers from each bin in each oligomeric state dataset before evaluation of these models. 

However, due to limitations of using RMSD as the only evaluation criterion, GDT-HA score 

[153], lDDT score [220], and TM-score [221] were considered. RMSD underestimates the 

accuracy of models if some loop regions are inaccurate [226] which makes it more sensitive 

than the GDT-HA score. The GDT-HA is a more stringent version of GDT, but all the 

oligomeric states scored above 50%. The heteromultimers scores were better than those for the 

homomultimers with bins from 30 – 39% sequence identity and upwards equal to or above 

50% GDT-HA score. For the homomultimers, dimers scored 50% from the 40 – 49% bin and 

above compared to the tetramers which only scored the same for the 80 – 89% bin. 
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Since lDDT is a superposition-free metric, it is insensitive to domain movements making it a 

better option compared with methods that calculate global scores [220]. For all the oligomeric 

states, lDDT scores (Fig 4.7C, Fig 4.8C, Fig 4.9C, and Fig 4.10C) were higher than the GDT-

HA scores (Fig 4.7D, Fig 4.8D, Fig 4.9D, and Fig 4.10D). GDT-HA scores were above 70% 

for the bins equal to or above 60 – 69% for the homodimers (Fig 4.7D) and heterodimers (Fig 

4.9D).  

TM-score is also a global score; however, it is independent of the protein size for related 

structure pairs unlike GDT scores and RMSD calculation. This makes TM-score a more 

sensitive measure compared with GDT scores [221]. This is also depicted in the results (Fig 

4.7B, Fig 4.8B, Fig 4.9B, and Fig 4.10B) for all the oligomeric states. Overall, TM-scores were 

above 0.5 except for the 20 – 29% bin for homotetramers (Fig 4.8B) and heterotetramers (Fig 

4.10B). This indicates that the protein complex pairs had the same structural topology [227]. 

Generally, RMSD values for all the oligomeric states for the bin 20 – 29% were high but with 

reasonable TM-scores. This is because the average RMSD calculation is affected by the size 

of the proteins with big proteins having high RMSD values [154].   
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Fig 4.7. Evaluation of the multimeric protein modeling Python scripts for the 
homodimeric dataset. Results shown are for homodimeric protein models for each alignment 
program in different sequence identity bins. This demonstrates: (A) the average RMSD, (B) 
TM-score, (C) lDDT score, and (D) GDT-HA score.  
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Fig 4.8. Evaluation of the multimeric protein modeling Python scripts for the 
homotetrameric dataset. Results shown are for homotetrameric protein models for each 
alignment program in different sequence identity bins. This demonstrates: (A) the average 
RMSD, (B) TM-score, (C) lDDT score, and (D) GDT-HA score.  
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Fig 4.9. Evaluation of the multimeric protein modeling Python scripts for the 
heterodimeric dataset. Results shown are for heterodimeric protein models for each alignment 
program in different sequence identity bins. This demonstrates: (A) the average RMSD, (B) 
TM-score, (C) lDDT score, and (D) GDT-HA score.  
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Fig 4.10. Evaluation of the multimeric protein modeling Python scripts for the 
heterotetrameric dataset. Results shown are for heterotetrameric protein models for each 
alignment program in different sequence identity bins. This demonstrates: (A) the average 
RMSD, (B) TM-score, (C) lDDT score, and (D) GDT-HA score.  
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4.6.4 Model refinement results 

To assess the effect of using different refinement options for MODELLER [119], more tests 

were performed for homomultimeric and heteromultimeric proteins. During benchmark tests, 

very slow refinement parameter was used to model protein targets. Generated data was 

complemented with results from modeling the same oligomeric state dataset using other 

refinement levels including none and fast refinement (Fig 4.11 and Fig 4.12).  

A significant improvement was observed for the z-DOPE scores when using fast refinement 

and no refinement option (Fig 4.11B, Fig 4.12A, and Fig 4.12B) except for homodimers (Fig 

4.11A). A slight improvement for z-DOPE scores was also observed between using very slow 

refinement and fast refinement option with the very slow refinement option performing better. 

The very slow refinement option showed no significant difference from using no refinement 

for the homodimers (Fig 4.11A).  

Interestingly, the RMSD metric showed consistent results with the z-DOPE scores. Using fast 

and very slow refinement parameters resulted in lower RMSD values compared with the no 

refinement option (Fig 4.11D, Fig 4.12C and Fig 4.12D) except for the homodimers (Fig 

4.11C). Sequence identities below 50%, 70%, and 40% showed differences for homotetramers 

(Fig 4.11D), heterodimers (Fig 4.12C) and heterotetramers (Fig 4.12D), respectively when 

using the three model refinement options.     
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Fig 4.11. Evaluation of homomultimeric models using model refinement options. Results 
shown are for the z-DOPE score results and RMSD values using fast, none and very slow 
refinement options in MODELLER. These include the z-DOPE score (A), (B) and RMSD 
values (C), (D) for dimers and tetramers, respectively. 
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Fig 4.12. Evaluation of heteromultimeric models using model refinement options. Results 
shown are for the z-DOPE score results and RMSD values using fast, none and very slow 
refinement options in MODELLER. These include the z-DOPE score (A), (B) and RMSD 
values (C), (D) for dimers and tetramers, respectively. 
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4.6.5 Case studies 

The assessment of protein models was performed using model evaluation programs including 

ProSA [159], and Verify3D [181], QMEAN [186], PROCHECK [188] and z-DOPE score 

[158].  

Modeling GTP_CH-I. The GTP_CH-I protein has various biological assembly templates with 

good sequence identities and coverage. GTP_CH-I can be modeled from various biological 

assembly states with different conformations from different organisms and homodecamers 

topped the list of templates. The generated models are shown in Fig 4.13. This showcases some 

of the features of PRIMO-Complexes namely protein viewer and more information displayed 

by the drop-down arrow. The protein viewer allows users to select and view different biological 

assemblies in a similar way when using SWISS-MODEL. The active drop-down arrows on 

some template rows display information about other existing biological assemblies for that 

same template.  

The evaluation results from the GTP_CH-I case study are summarized in Table 4.2. Different 

biological assembly templates were used to model the GTP_CH-I protein but both templates 

were homodecamers. This demonstrates the need to model proteins using different templates 

and alignment programs, which PRIMO-Complexes web server is designed to accomplish. In 

this case study, other online servers were used to model GTP_CH-I. These servers were 

automatically run and only SWISS-MODEL provided an option to select biological assembly 

templates and their corresponding information. Robetta server provided no option beyond the 

initial input screen. All servers included inhibitors in models except the Robetta server. Overall, 

the results show that all the protein models were of good quality. PRIMO-Complexes scored 

more favourably than the other servers.  
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Fig 4.13. Cartoon representation of GTP cyclohydrolase I (GTP_CH-I) protein models. 
Protein models generated using; A) PRIMO-Complexes using T-Coffee alignment, B) 
PRIMO-Complexes using MUSCLE alignment. C) SWISS-MODEL, and D) Robetta are 
shown. PRIMO-Complexes and SWISS-MODEL included ligands and/or ions in the models 
except the Robetta web server.  
 

Modeling hSod1. This protein was used to show that these servers are capable of modeling 

protein monomers in case they are predicted to function as single proteins. For PRIMO-

Complexes, hSod1 was modeled using an asymmetric unit and biological assembly template. 

This illustrates the PRIMO-Complexes feature of returning and modeling from asymmetric 

units in case no biological assemblies exist in the PDB. SWISS-MODEL and Robetta servers 

were used to model hSod1. PRIMO-Complexes and SWISS_MODEL included inhibitors in 

the models whereas Robetta server did not as shown in Fig 4.14. All proteins were modeled as 

monomers and of good quality as shown in Table 4.3. 
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Fig 4.14. Cartoon representation of superoxide dismutase (hSod1) protein models. These 
protein models generated using; A) PRIMO-Complexes using T-Coffee alignment, B) PRIMO-
Complexes using MUSCLE alignment. C) SWISS-MODEL, and D) Robetta are shown. All 
the web servers generated monomeric protein models. 
 
Modeling alpha-globin. With the exception of Robetta, all other modeling servers returned 

heterotrimers. Robetta returned a heterodimer, as the predicted biological assembly. In terms 

of ligand modeling, PRIMO-Complexes and SWISS-MODEL identified ligands in their 

respective biological assembly templates and included them in the generated models whereas 

Robetta server did not include ligands as shown in Fig 4.15. All the servers produced good 

quality models regardless of the different predicted oligomeric states.  
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Fig 4.15. Cartoon representation of hemoglobin subunit alpha (alpha-globin) protein 
models. Protein models generated using; A) PRIMO-Complexes using MAFFT alignment, B) 
SWISS-MODEL, and C) Robetta are shown. PRIMO-Complexes and SWISS-MODEL 
modeled trimers and included ligands and/or ions in the models with the except of the Robetta 
web server. 
 

Apart from PRIMO-Complexes), none of the servers provided options to specify ligands to be 

included when modeling. For PRIMO-Complexes, specific inhibitor molecules in each chain 

were selected from each template to be modeled with the protein. These three case studies were 

not meant to be a comprehensive assessment of PRIMO-Complexes compared to other protein 

multimeric modeling servers, but it was encouraging to see that PRIMO-Complexes performed 

relatively well against other servers for most of the evaluation tools used (Table 4.2, Table 4.3, 

and Table 4.4).
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Table 4.2. Protein model quality evaluation results for modeling GTP cyclohydrolase I (GTP-CH-I) protein using PRIMO-Complexes and 
other modeling servers. GTP-CH-I protein was modeled, and the models were evaluated. Protein models for each server are shown along with 
the quality scores generated by ProSA, Verify3D, QMEAN, PROCHECK and z-DOPE score. The predicted oligomeric state modeled for each 
protein is also shown. The PROCHECK results are divided as follows: Fav – Residues in most favoured regions; Add – Residues in additional 
allowed regions; Gen – Residues in generously allowed regions; Dis – Residues in disallowed regions.  
 

 

  

GTP-CH-I  
ProSA Verify3D QMEAN PROCHECK MODELLER  

Model Z-score % Residues 
with 3D-1D 
score >= 0.2 

QMEAN4 Fav. Add. Gen. Dis. z-DOPE 
score 

Oligomeric 
state 

modeled 

PRIMO-
Complexes_3DC -7.21 86.85% 0.57 97.3% 2.7% 0.0% 0.0% -1.84 homodecamer 

PRIMO-
Complexes_muscle -7.21 86.04% 0.24 96.5% 3.3% 0.2% 0.0% -1.51 homodecamer 

SWISS-MODEL -6.86 69.28% -1.49 90.0% 8.2% 1.3% 0.5% -1.75 homodecamer 

Robetta -6.42 80.68% 0.86 94.8% 5.2% 0.0% 0.0% -1.75 homodecamer 
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Table 4.3. Protein model quality evaluation results for modeling superoxide dismutase (hSod1) protein using PRIMO-Complexes and 
other modeling servers. hSod1 protein was modeled, and the models were evaluated. Protein models for each server are shown along with the 
quality scores generated by ProSA, Verify3D, QMEAN, PROCHECK and z-DOPE score. The predicted oligomeric state modeled for each protein 
is also shown. The PROCHECK results are divided as follows: Fav – Residues in most favoured regions; Add – Residues in additional allowed 
regions; Gen – Residues in generously allowed regions; Dis – Residues in disallowed regions.  
 

 
 
  

hSod1  
ProSA Verify3D QMEAN PROCHECK MODELLER  

Model Z-score % Residues 
with 3D-1D 
score >= 0.2 

QMEAN4 Fav. Add. Gen. Dis. z-DOPE 
score 

Oligomeric 
state 

modeled 
PRIMO-
Complexes_3DC_asymmetric 
unit template used 

-4.89 97.39% -1.47 82.0% 16.4% 1.6% 0.0% -1.41 monomer 

PRIMO-Complexes_muscle -5.54 100.00% 0.78 91.8% 8.2% 0.0% 0.0% -1.95 monomer 

SWISS-MODEL -5.81 100.00% 1.22 90.2% 9.8% 0.0% 0.0% -2.11 monomer 

Robetta -5.39 99.35% 1.98 90.2% 9.8% 0.0% 0.0% -2.18 monomer 
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Table 4.4. Protein model quality evaluation results for modeling hemoglobin subunit alpha (alpha-globin) protein using PRIMO-
Complexes and other modeling servers. Alpha-globin protein was modeled, and the models were evaluated. Protein models for each server are 
shown along with the quality scores generated by ProSA, Verify3D, QMEAN, PROCHECK and z-DOPE score. The predicted oligomeric state 
modeled for each protein is also shown. The PROCHECK results are divided as follows: Fav – Residues in most favoured regions; Add – Residues 
in additional allowed regions; Gen – Residues in generously allowed regions; Dis – Residues in disallowed regions. 
  

 

 

 

alpha-globin  
ProSA Verify3D QMEAN PROCHECK MODELLER  

Model Z-score % Residues 
with 3D-1D 
score >= 0.2 

QMEAN4 Fav. Add. Gen. Dis. z-DOPE 
score 

Oligomeric 
state 

modeled 

PRIMO-
Complexes_MAFFT -8.03 99.65% -1.69 94.2% 5.6% 0.0% 0.2% -0.94 heterotrimer 

SWISS-MODEL -7.93 97.74% -0.72 93.4% 6.4% 0.0% 0.2% -1.61 heterotrimer 

Robetta -7.88 100.00% 0.11 92.0% 7.7% 0.3% 0.0% -1.65 heterodimer 
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4.7 Conclusion 

We have successfully developed and evaluated the functionality of PRIMO-Complexes–a new 

webserver for modeling protein complexes. The results from the benchmark tests are generally 

promising with low z-DOPE scores for sequence identities above 40% for all the oligomeric 

states. The other additional metric parameters calculated also showed that multimeric protein 

modeling algorithms embedded in PRIMO-Complexes can generate high-quality protein 

complexes. The automated features of PRIMO-Complexes to model protein complexes will be 

continuously evaluated by CAMEO in future. 
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PART II: SIDE PROJECTS – DEVELOPMENT OF OTHER 
BIOINFORMATICS TOOLS AND WEB SERVERS 

CHAPTER FIVE 

RUBI PROTEIN MODEL REPOSITORY FOR ANNOTATED 
3D PROTEIN STRUCTURES 

Chapter overview 

In this work, a web-based repository was developed to provide researchers with access to 

protein models generated in our research group ‒ RUBi. In this chapter, the RUBi protein 

model repository which houses protein models is discussed in detail. This web server can be 

freely accessed via a web server (https://rhpr.rubi.ru.ac.za/). 

5.1 Introduction 

Computational protein structure prediction methods [228,229] are currently being used to 

bridge the gap between and known sequences and their structures. Web servers have been 

developed to aid the process of protein structure prediction generating enormous protein 

models. The increased production of these theoretical and pre-computed models has 

necessitated the development of databases to store them. These repositories serve as starting 

points to assist researchers in effortlessly exploring the 3D protein space while working on 

various projects. Repositories including protein model portal [198], Swiss-Model repository 

[230], Genome3D [231], ModBase [232], and G protein-coupled receptor database (GPCRdb) 

[233] contain protein models generated using various methods. The annotated 3D protein 

models in these databases are automictically generated. Some are based on sequences in 

UniProtKB [234], and /or Structure Function Linkage Database (SFLD) [235] while others are 

user-specific. In contrast to the other databases which store computational models, GPCRdb 

[233] is used to store and analyse experimentally derived data from PDB crystal structures [51] 

and manually annotated single-point mutations.  

https://rhpr.rubi.ru.ac.za/
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5.2 Research aim and objectives 

The aim of this project is to provide users with access to theoretical verified protein models to 

ensure the reproducibility of the work.  

Specific objectives for this work: 

1. To develop a web server to provide access to protein models with their corresponding 

accuracy information 

2. To incorporate an NGL viewer for users to visualise the protein models 

5.3 Implementation details 

5.3.1 Web interface 

The server side of RUBi protein model repository was developed using a Django framework 

(https://www.djangoproject.com). Graphical aspects of the web application were implemented 

using Hypertext Markup Language (HTML), Cascading Style Sheets (CSS) with a bootstrap 

framework, JavaScript using AJAX calls to the server and NGL viewer for 3D structure 

visualization (https://github.com/arose/ngl/). 

5.3.2 Repository content 

The RUBi protein model repository includes models that have been created using MODELLER 

[119] and in-house Python scripts. The process of homology modeling involves all the steps as 

implemented by automated modeling pipelines. Software or tools used at each modeling step 

include: BLAST [122] and HHpred [133,236] to search for suitable templates (protein 

structures) in the PDB [51]; Clustal [134], Muscle [135], MAFFT [136], T-Coffee [137], and 

Promals3D [138] for multiple sequence alignment, MODELLER [119] for modeling and loop 

refinement; ANOLEA [237], PROCHECK [188], ProSA [159], QMEAN [186], and Verify3D 

[181] for model quality assessment. This is a standalone repository that will expand as new 

https://www.djangoproject.com/
https://github.com/arose/ngl/
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protein models are provided by the authors before or after they have published their findings. 

When better templates become available, these models will not be updated since this repository 

is not connected to a fully automated homology modeling pipeline. Currently, the repository 

contains mainly 111 model entries with 10,000 modelled single nucleotide variants.  

Homology models were created using well-proven modeling methods (refer to the case study 

section) and most have been published whereas others are yet to be published. All models are 

research-driven, tailored to specific projects within the RUBi research group. These protein 

models include GTP CycloHydrolase 1 (GCH1) generated by Afrah Khairalla; Heat shock 

proteins generated by Arnold Amusengeri; Plasmodium 1-deoxy-D-xylulose 5-phosphate 

reductoisomerase (DXR) generated by Bakary N'tji Diallo; Aminoacyl tRNA synthetases 

(aaRSs) generated by Dorothy Nyamai; Plasmodial proteases generated by Musyoka Mutemi 

Thomas; Human Immunodeficiency Virus (HIV) protease generated by Olivier Sheik 

Amamuddy; Plasmodial Transketolases generated by Rita Afriyie Boateng; Auxiliary Activity 

family 9 (AA9) generated by Vuyani Moses; and Glycoside Hydrolase 1 enzymes from 

Bacillus licheniformis generated by Wayde Veldman. 

5.4 Results 

5.4.1 Web server design and content 

We designed the webserver to store protein models. The webserver can be accessed through 

https://rhpr.rubi.ru.ac.za/ 

It has a single-page interactive user interface. The main page of the repository is accessed via 

a summary table that is displayed to the user (Fig 5.2). This table contains all the available 

models with their corresponding z-DOPE scores [158], validation scores with a few selected 

validation programs, and a link to the article in case it is published. This also allows the user 

to search, download, and view the 3D model structures. An in-page protein structure 

https://rhpr.rubi.ru.ac.za/
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visualization was incorporated using the NGL web viewer plugin [219]. The models can be 

downloaded as flat files in PDB format.  

 

Fig 5.1. A single page web interface for RUBi protein homology models repository. The 
pages change as you scroll back and forth. 
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Fig 5.2. Protein models web page. It shows the protein name, z-Dope score, quality 
assessment values, templates and reference to the article if published. On the right is the 3D 
structure visualization plugin showing one of the protein models in the repository and selected 
models are downloaded. 
 

5.5 Examples of models in the repository 

5.5.1 Plasmodium 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) 

The models are of Plasmodium 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) in 

closed and open conformations for the different Plasmodium sequences (P. falciparum, P. 

malariae, P. vivax, P. ovale, P. knowlesi, P. berghei, P. yoelii yoelii and P. chaubadi). DXR is 

a class B  dehydrogenase that catalyses the second step of the 2-C-methyl-D-erythritol-4-

phosphate (MEP) pathway by converting DOXP to MEP by isomerization and followed by 

NADPH reduction [238]. 

PfDXR is a homodimer in a V shape with a molecular mass of approximately 47 kDa. Each 

monomer contains an NADPH molecule and a divalent metal ion (Mg 2+, Co 2+ or Mn 2+ ) 

required for the catalytic activity of the enzyme [239]. Each monomer has two large domains, 

a linker region, and a small C-terminal domain. The two large domains are separated by a cleft 
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containing a deep pocket. A flexible loop region (residues 291 to 299) is inserted in the catalytic 

domain.  Comparative studies between different DXR structures revealed three conformations: 

the open form with the loop opened (no substrate/inhibitor), the open form with the flexible 

loop closed (with substrate/inhibitor, prepared by soaking), and the configuration with the 

flexible loop covering the active site (with substrate/inhibitor, prepared by co-crystallization) 

[240].  

MODELLER [119] version 9.19 was used for homology modeling. DXR monomer models 

were developed for each Plasmodium specie. HHPred was used for template identification: 

5JAZ and 1K5H for the protein in open and closed conformations respectively. MODELLER’s 

ALIGN2D command was used for target-template alignment. A hundred models were 

generated for each protein using very slow refinement. The models were produced while 

maintaining the template ligands at their positions to maintain the binding site geometry and 

environment reasonable similar to the template.  

MODELLER (DOPE Z-score), QMEAN [186], PROCHEK [188], ProQ3D [241] and DFIRE 

[242] were used for model evaluation. The models were first filtered by the DOPE Z-score. 

The best five models for each protein per DOPE Z-score were selected and assessed using the 

available QMEAN API. The best QMEAN Z-score were finally selected for each specie. 

Models were assessed by using their template as a reference for comparison. 

5.5.2 Glycoside Hydrolase 1 enzymes from Bacillus licheniformis 

Glycoside hydrolases (GH) are enzymes that break down polysaccharides that are available in 

starch and lignocellulose, which makes up most of the content of biomass [243]. The enzymes 

catalyze the hydrolysis of glycosidic bonds in these polysaccharides [244].  GH1’s have a wide 

array of functions - the Carbohydrate-Active Enzyme (CAZy) database reveals that there 

are twenty-one different enzymatic activities in the GH1 family, including 6-P-β-glucosidases 
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(EC 3.2.1.86), β-glucosidases (EC 3.2.1.21), and 6-P-β-galactosidases (EC 

3.2.1.85) [245]. GH1 enzymes cleave their substrates under retention of configuration at the 

anomeric carbon atom, employing a double-displacement mechanism of catalysis [246]. Two 

conserved catalytic glutamate residues play a role in this mechanism. GH1 enzymes consist of 

successive (β/α) motifs that form a conserved (β/α)8-barrel core connected by short loops [247].  

Using the National Center for Biotechnology Information (NCBI) database, the full Bacillus 

licheniformis Glycoside Hydrolase 1 (BlGH1) sequences with accession numbers 

AAU41434.1, AAU39684.1 and AAU42981.1 were retrieved. The HHpred web server [236] 

was used to search for homologous structures. To determine homology and the possibility of 

use as a template, unpublished solved BlGH1 crystal structures from our collaborator were 

aligned to the BlGH1 sequences to be modelled - also using HHpred  [236]. The PDB ID of 

the templates selected for each of the BlGH1 sequences are as follows: AAU41434.1 ‒ 2O9P 

and 5NAV; AAU39684.1 ‒ 3QOM, 2XHY as well as unpublished structures from our 

collaborator (sequences AAU43012.1 and AAU43027.1); AAU42981.1 ‒ 3QOM, 5NAV, 

2O9P and 3W53. Each target sequence was aligned with the templates utilizing PROMALS3D 

[138]. The GH1 enzymes were modelled using MODELLER [119]. One hundred models were 

generated, after which the top 3 models were selected based on their z-DOPE score  [158] and 

further evaluated using ProSA [159], QMEAN [186] and Verify3D [181] for accurate model 

validation. The best model was then chosen based on the combination of these results. 

5.5.3 HIV protease 

HIV protease Proteolytically cleaves HIV Pol and GagPol polyproteins to aid the process of 

viral maturation [248]. Comprises two 99 residue-long monomers, which form a substrate 

binding pocket at their interface [248]. Catalytic activity is mediated by an ASP25 coming from 

each monomer [248]. Flaps control the opening and closing of the binding cavity [249]. 
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MODELLER was used with very slow refinement for modeling the variants using a high 

resolution (<1.55 Å) crystal structure as a template (PDB accession: 3EL9). Interfacial water 

was retained from each template crystal structure by selecting water residues at an intersecting 

distance of 3 Å between both chains of the dimer. Model quality was assessed using z-DOPE 

scores [158]. 

5.5.4 GTP CycloHydrolase 1 (GCH1) 

GTP CycloHydrolase 1 (GCH1) is the first and rate limiting enzyme of the de novo folate 

synthesis pathway in bacteria, protozoa, fungi, plants and lower eukaryote [250]. The enzyme 

is responsible for the conversion of Guanosine-5'-triphosphate to the pteridine moiety 

dihydroneopterin triphosphate (DHNP) [251]. GCH1 is homo-decameric enzyme with ten 

metal containing active sites. The active sites are located in a deep pocket formed at the 

interface of every adjacent three monomers.  GCH1 is a member of the Tunnelling-fold 

structural superfamily which is characterized by a central barrel formed by sequential anti-

parallel β-strands flanked by α- helices on each side [252].  

The malaria parasite Plasmodium. falciparum GCH1 3D structure was built using 

MODELLER v.9.16 [119]. The Thermus thermophilus HB8 crystal structure (PDB ID: 1WUR) 

was selected as a template structure for the model building. 100 models were generated with 

slow refinement applied to the modeling process. The resultant models were then ranked based 

on the calculated z-DOPE score. The top three models with the lowest z-DOPE scores were 

selected for structure validation via PROCHECK [188], ProSA [159], and QMEAN [186]. 

5.5.5 Aminoacyl tRNA synthetases (aaRSs) 

Aminoacyl tRNA synthetases (aaRSs) are ubiquitous enzymes that catalyse ligation of amino 

acids to their cognate tRNA during protein translation [253,254]. These enzymes are grouped 

into two classes based on the mode of tRNA binding and the architecture of the catalytic 
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domain (CD) [254–256]. There is a minimum of 20 aaRSs enzymes each for charging the 20 

amino acids [255,257]. Generally, aaRS have four domains, the N-terminal domain (NTD), the 

CD, the anticodon binding domain (ABD) and the C-terminal domain (CTD) [256]. In 

Plasmodium falciparum, some aaRSs enzymes are expressed in two copies, one residing in the 

cytoplasm and the other copy is targeted in the apicoplast. In this work, we only modelled the 

cytosolic enzymes.  

The 3D structures of P. falciparum arginyl tRNA synthetase (ArgRS), lysyl tRNA synthetase 

(LysRS), methionyl tRNA synthetase (MetRS), tryptophanyl tRNA synthetase (TrpRS) and 

prolyl tRNA synthetase (ProRS) were calculated using MODELLER v9.15 [119]. Templates 

were identified using PRIMO [87] and HHpred [236] web servers. For PfArgRS-5JLD 

[255,258]; PfLysRS-4DPG [255,259]; PfTrpRS-1R6U [260] and 4J76 [261]; for PfProRS-

4WI1 [262] and 4HVC [263]; for MetRS-4DLP [255,264], the crystal structure of Brucella 

melitensis MetRS was used. A hundred models were calculated for each protein and the top 

three models with the lowest z-DOPE score were selected for model quality assessment. 

Verify3D [181], PROSA [159] and QMEAN [186] model validation tools were used to assess 

the model quality and the model with the best scores was selected.  

5.5.6 Plasmodial Transketolases 

Plasmodial transketolase catalysis the reverse transfer of 2-carbon ketol group from ketose 

phosphate donor to an aldose phosphate acceptor. This activity produces NADPH and ribose-

5-phosphate important for parasite survival. The structure of the plasmodial transketolase 

consists of three domains. The N-terminal or the pyrophosphate (PP-) terminal domain consists 

of residues ~ 3-322 representing almost half of the subunits and is important for thiamine 

diphosphate (ThDP) binding. The middle and N-terminal have been reported to be involved in 

the subunit’s interactions and the binding and recognition of ThDP cofactor. The Middle-
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terminal domain residues 323 to 538 make up the pyrimidine (Pyr) domain. It consists of 

parallel beta-sheets which interact with the ThDP. This region is noted for the binding of 

substrates and ThDP. The C- terminal consists of ~ 150 residues and five stranded mixed beta-

sheet. The function of this terminal is not known; however, it is believed to regulate enzyme 

activities, stereochemical control of the sugar substrate and a regulatory binding site of 

transketolase.  

P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi sequences were used as query 

sequences to search homologs structures (templates) using HHpred [265] and PRIMO [87] web 

servers to retrieve suitable template (s) using the default parameters. The best template with 

high resolution, good PDB validation matrices, high sequence identity to the query sequences, 

good coverage of the structure to the query sequences, completeness of the protein structure 

and E-values of 0 or close to 0 and organism with known information were selected for further 

validation. Saccharomyces cerevisiae (PDB id: ITRK) [266] was used as the best template for 

the modeling. Target-template multiple sequence alignment was performed using 

PROMALS3D [138] tool which takes into consideration the structural information of the 

proteins during alignment. Aligned output was selected and aligned sequences were manually 

inspected were applicable. The three input files: PDB atom files of the template protein 

structure, alignment file of the target and template including ThDP and calcium cofactors and 

the MODELLER script file that instructs MODELELR 100 refined homodimer 3D structures 

of each transketolase were generated using MODELLER version 9.18 based on the input 

sequence alignment and selected template. The cofactors ThDP and Ca2+ were included in 

modeling. Very slow refinement level was used which was performed by MODELLER by 

default. After the models were generated, a MODELLER Python script was used to generate 

each of the model’s DOPE scores to rank the models on the basics of their energy levels. Top 

three models with the lowest DOPE evaluated scores were selected form the rest of the models 
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for further evaluation analysis. The top three models each were evaluated using PROCHECK 

[188], VERIFY3D [181], QMEAN [186]. One best model with a consensus between the quality 

validation tools. 

5.5.7 Heat shock proteins  

Heat shock proteins, in general, are highly conserved molecular chaperones that facilitate 

correct protein folding, regulate translocation and exposure of misfolded proteins to 

degradation machineries. PfHsp70-1 and PfHsp70-x, expressed during the critical asexual 

blood developmental stage of P. falciparum, promote the parasites’ adaptation and survival in 

the human body. Normal human cells ubiquitously express Hsc70, and in limited amounts 

Hsp72. Hsc70 is thought to maintain routine intracellular proteostatic functions. Expression of 

Hsp72 is often induced by stress stimuli, and it is thought to discourage protein aggregation.  

Structurally, Hsp70’s are made up of two main domains: a nucleotide binding domain (NBD), 

and a substrate binding domain (SBD), connected by a conserved interdomain linker. The NBD 

and SBD are involved in the binding and release of nucleotides (ATP/ADP) and peptide 

substrate respectively. The protein adopts two major conformations during its functional cycle: 

An open conformation (ATP bound) and a closed conformation (ADP and substrate bound). 

Ligand binding/release events induce cross-domain allosteric signals which regulate 

conformational transitions. 

Comparative modeling was implemented in generating all the models. The method used to 

model Hsp72, Hsc70 and PfHsp70-1, PfHsp70-x structures can be found in our previously 

published work [267].  
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5.5.8 Auxiliary Activity family 9 (AA9) 

The Auxiliary Activity family 9 (AA9) enzymes are a group of that interact with crystalline 

cellulose resulting in cleavage of the glucose residues. This reaction involves abstraction of a 

carbon atom which is subsequently replaced by a hydrogen atom through successive electron 

rearrangements. The cleavage of the cellulose chain results in the destabilization of the 

cellulose crystal which makes it susceptible to the action of cellulose [268]. 

AA9 enzymes are a single monomeric enzyme that have an active site region that can be found 

close to the central part of their characteristic flat face. This flat face is believed to directly 

interact with cellulose resulting in cleavage. A copper ion located at the active site is 

responsible for catalysing the observed cleavage. This copper is chelated by two of the N-

terminal histidine and a  nitrogen from another histidine side chain resulting in a configuration 

called the histidine brace [269]. Moses et al details how the modeling of the AA9 protein was 

performed [270]. 

5.5.9 Plasmodial proteases 

During the erythrocytic blood phase, Plasmodium falciparum utilises papain-like Clan CA 

cysteine proteases to degrade host hemoglobin in order to obtain nutrients required for their 

growth and replication [271–273]. Falcipain 2 and 3 (FP-2 and FP-3) are known to be the key 

hemoglobinases and are validated drug targets [274,275]. Other Plasmodium species also 

express highly homologous to FP-2 and FP-3. These include vivapains (vivapain 2 [VP-2] and 

vivapain 3 [VP-3]), knowlesipains (knowlesipain 2 [KP-2] and knowlesipain 3 [KP-3]), 

berghepain 2 [BP-2], chabaupain 2 [CP-2] and yoelipain 2 [YP-2] from Plasmodium vivax, 

Plasmodium knowlesi, Plasmodium berghei, Plasmodium chabaudi and Plasmodium yoelii, 

respectively [276–279]. Together with human cathepsins (Cat. K, Cat. L and Cat. S), these 

proteins share a common structural feature as well as catalytic mechanism. These proteins are 
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synthesized as zymogens with their substrate processing activity being tightly regulated in 

space and time through an occluding prodomain segment which blocks the active site making 

it inaccessible [280]. Auto-splicing of the prodomain occurs under low pH conditions through 

the disruption of important residue interactions leading to the activation of the enzymes. 

Despite sharing a common structural fold, the plasmodial proteases have unusual features 

compared such as longer prodomains and specific inserts in the catalytic domain-a “nose” (~ 17 

amino acids) and an “arm” (~ 14 amino acids). As with other Clan CA family of enzymes, they 

are characterised by a highly conserved catalytic triad consisting of Cys-His-Asn centrally 

located in a trench-like cleft at the junction between left (L) and right (R) domains [281]. The 

L domain is mainly alpha helical and the R domain fold into a β-barrel. Extra residues around 

these catalytic triad centres also play important roles during the substrate hydrolysis process, 

and are grouped into four subsites namely S1, S2, S3 and S1’ [282]. In spite of similarities 

between the two protein groups, our previous study revealed key subsite residue composition 

differences which could be exploited for inhibitor design targeting only the plasmodial proteins 

[283]. The prodomain sections have two highly conserved motifs viz. ERFNIN and GNFD 

which mediate the inhibition of the catalytic domains as well as maintaining the prodomain 

structural fold [284]. 

A detailed homology modeling for both the prodomain-catalytic complex as well as the 

catalytic domains (plasmodial proteases without any crystal structure in the PDB can be found 

in our previous articles [283,285]. 

5.6 Maintenance  

The 3D protein models in the repository will continue to increase as RUBi researchers continue 

to deposit modeled structures. Additionally, other members of the research community will 

also be able to deposit modeled structures through the web server administrators. The accuracy 
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of these models depends on the availability the templates that are used at the time of modeling. 

All models were assessed using at least one online tool to ascertain the quality.  

5.7 Conclusion 

We successfully developed the RUBi protein model repository – an online repository for 

models of proteins. This repository is only the starting point for providing access to protein 

models for the public and researchers interested in conducting further research and analysis. In 

the future, this repository will expand as protein models are added by users. The models will 

be curated to ascertain their accuracy before being uploaded to the repository. The repository 

will further be connected to automated homology modeling pipelines – PRIMO and PRIMO-

Complexes described in Part 1 of this thesis [87]. 
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CHAPTER SIX 

HIV-1 RESPREDICTOR: A WEB APPLICATION 
EMPLOYING ARTIFICIAL NEURAL NETWORKS TO 
PREDICT ANTIRETROVIRAL DRUG RESISTANCE IN 

PATIENTS INFECTED WITH HIV-1 SUBTYPE B 

Chapter overview 

Human Immunodeficiency Virus type 1 (HIV-1) drug resistance is a big problem for HIV care 

as it results in the failure of many antiretroviral therapies [286]. Unfortunately, it is difficult, if 

at all possible, to tell beforehand which patients will develop drug resistance. Monitoring the 

development of drug resistance is a cumbersome and expensive process that involves complex 

tests that are sometimes not readily available, especially in many low-income settings [287]. 

Normally, clinicians use their intuition and clinical acumen to judge drug resistance in patients 

and switch treatments. This approach does not rule out other potential causes of drug resistance 

and is ineffective at pinpointing the specific drug in the regimen that the HIV virus might be 

resistant to [288]. Switching drugs is also not the optimal solution as this may lead to cross-

resistance over time. 

Predicting drug resistance to HIV-1 viruses before initiation of treatment has improved the care 

of patients. Recent advances in bioinformatics have improved the accuracy in predicting the 

potential HIV drug resistance but the procedures have some limitations [289]. Several 

approaches have been developed to detect drug resistance and these include structural-based, 

sequence-based, and a combination of both structural and sequence-based methods. It is 

important to share valuable methods for predicting drug resistance with the research 

community.  
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This project was aimed at developing a web-based application for predicting drug resistance 

among patients with HIV-1 subtype B. This web application was named HIV-1 ResPredictor 

(HIV-1 Resistance Predictor). This application uses artificial neural networks (ANNs) to 

predict drug resistance for HIV-1 subtype B [290]. Since these ANNs were trained on HIV-1 

subtype B sequences, subtype classifiers were trained using hidden Markov models (HMMs) 

to distinguish subtype B sequences from the other subtypes to generate appropriate results. 

In this chapter, the focus will be placed on discussing the new additions performed to better 

this web-based application. The work described here builds on my master's degree work [291]. 

The following tasks were added: performing the Bland-Altman analysis to analyse the level of 

agreement between Python-generated models and MATLAB-based ANN models, expanding 

nucleotide sequences in case they have ambiguous characters before being translated to amino 

acid sequences, testing the performance of HIV-1 ResPredictor in comparison with similar 

commonly used subtyping tools and assessing the usability comparison between HIV-1 

ResPredictor and other HIV resistance prediction servers. This application returns a summary 

report of the prediction results which can either be downloaded as a portable document format 

(PDF) file or received via email. The web application can be freely accessed at 

https://hiv1respredictor.rubi.ru.ac.za/. 

6.1 Introduction 

Over the last two decades, there has been a decline in acquired immunodeficiency syndrome 

(AIDS)-related mortality. This progress is due to a global roll-out of HIV testing and treatment 

witnessed by 27.5 million people living with HIV receiving antiretroviral therapy (ART) 

globally in 2020 [292]. Despite the progress, HIV continues to be a major global health crisis. 

In the year 2020, people living with HIV were approximately 37.7 million with 1.5 million 

newly infected people and 680,000 deaths from AIDS-related causes globally [293]. 

Furthermore, there are still challenges in the fight against HIV including prevention of new 

https://hiv1respredictor.rubi.ru.ac.za/
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infections, diagnosis and expansion of access to cost-effective treatment, the emergence of 

drug-resistant HIV strains and the existence of comorbidities together with premature ageing 

in infected patients [294–296]. 

With regard to drug resistance, there is an increasing number of people with HIV resistant 

strains, especially among patients with difficulties adhering to prescribed antiretroviral therapy 

(ART) [288]. Consequently, health workers often need to switch treatments early to second 

and third-line regimens. This is associated with undesirable side effects, costs and additional 

challenges to adherence [297,298]. When using conventional clinical examination and standard 

laboratory tests, it is often difficult to predict which patients will become resistant to drugs and 

challenging to determine the drug types or combinations to which the virus will become 

resistant [288]. Monitoring drug resistance development requires sophisticated tests [299], 

which may not be readily available, particularly in resource-limited settings [287].  

HIV viruses develop resistance in multiple ways, including mutations in the genes coding for 

various proteins, particularly enzymes like protease and reverse transcriptase that regulate 

replication [300]. Since the discovery of the drug resistance problem in the 1990s, several 

mechanisms have been put in place to understand how and why it occurs [301]. Researchers 

have come up with ways to solve this problem and one way is to develop computational 

approaches for predicting drug resistance [289]. Some of these approaches are structural-based, 

others are sequence-based while some use a combination of both structural and sequence-based 

methods [299].  

While these approaches have improved the accuracy and alleviated the problem of predicting 

drug resistance, they are not without challenges. In the past years, several interpretation web 

applications have been developed, among which HIVdb [302], REGA [303], and the Agence 

Nationale de Recherche sur le SIDA (ANRS) [304] are more regularly used [304]. Some of 
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these applications predict genotypic resistance, while others predict phenotypic resistance as 

well as viral outcome analysis [305]. Some of these applications use specific HIV subtypes 

hence the need to utilise classification tools that provide support for genetic classification. 

Examples include Stanford HIV-Seq program [302], the Los Alamos Recombinant 

Identification Program (RIP) [306], the National Center for Biotechnology Information (NCBI) 

Genotyping Program [307], REGA [308], COntext-based Modeling for Expeditious Typing 

(COMET) [309] and the Jumping Profile Hidden Markov Model (jpHMM) [310].  

6.2 Research motivation 

Since there is rapid growth in the interest of genomics and personalised medicine, it is 

important to harness the functionality of easy-to-use systems that analyse enormous amounts 

of sequence data to assess the drug response and disease-related risks of a particular individual. 

Utilizing the simplicity, user-friendliness and short turnaround time of the systems, researchers 

and clinicians can make guided decisions including better treatment strategies and monitoring 

the emergence of drug resistance.  

6.3 Research aim and objectives 

The aim of this work was to develop a web-based application for predicting HIV-1 subtype B 

drug resistance to eighteen antiretroviral (ARV) drugs. Whereas there are different HIV-1 

subtypes, this application focuses on subtype B ARV drugs thus the need to also develop HIV-

1 subtype classifiers using hidden Markov models.  

To fulfil this aim, the main objectives included: 

1. To develop a mechanism for classifying HIV-1 protease and reverse transcriptase 

amino acid sequences 
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2. To translate the ANNs scripts for predicting HIV-1 drug resistance from MATLAB to 

similar task-performing scripts in Python 

3. To develop a web application that predicts drug resistance in patients infected with 

HIV-1 subtype B 

6.4 Methodology 

6.4.1 Implementation 

HIV-1 ResPredictor was developed using the Django framework whereas the drug resistance 

models incorporated into the web application were re-implemented in Python programming 

language. The Python open-sourced library NumPy was used for the matrices and vectors 

sourced from MATLAB ANN models [290]. The HMM models for subtype classification were 

also incorporated into this web application [291]. Implementation details of the HIV-1 

ResPredictor web application were described in my previous project [291]. 

6.4.2 Translation of ANN models to Python 

The drug resistance prediction models are for three antiretroviral drug classes comprising of 

eighteen drugs: Protease Inhibitors (PIs) (Atazanavir, Darunavir, Fosamprenavir, Indinavir, 

Lopinavir, Nelfinavir, Saquinavir, Tipranavir), Nucleoside Reverse Transcriptase Inhibitors 

(NRTIs) (Abacavir, Didanosine, Lamivudine, Stavudine, Tenofovir, Zidovudine) and Non-

Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) (Efavirenz, Etravirine, Nevirapine, 

Rilpivirine). These models [290] were trained using regression ANN on publicly available data 

from the Stanford HIV drug resistance database (HIVdb) [311].  

The output of ANN models comprises fold resistance scores of the various ARVs, and these 

scores are translated into a classification (susceptible, intermediate, or resistant) by applying 

drug-based cut-off values taken from Stanford HIVdb [312]. For consistency among all the 
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classification classes, the fold resistance scores are normalized and returned alongside the 

unnormalized score in the result summary report. The normalized values are all in the range 0 

to 100, with 40 the cut-off between susceptible and intermediate, and 60 the cut-off between 

intermediate and resistant. The mapping between fold resistance and normalized fold resistance 

scores is piecewise linear. For a particular drug, if f is the fold resistance score, with fsi and fir 

the cut-off values between susceptible and intermediate, and between intermediate and 

susceptible, respectively; and fm is the maximum value of f across the ANN training data then 

the normalized score n is 

𝑛 = 0, (𝑓 ≤ 0) 

𝑛 = 40
𝑓

𝑓𝑠𝑖
, (0 < 𝑓 ≤ 𝑓𝑠𝑖) 

𝑛 = 40 + 20
𝑓 − 𝑓𝑠𝑖

𝑓𝑖𝑟 − 𝑓𝑠𝑖
, (𝑓𝑠𝑖 < 𝑓 ≤ 𝑓𝑖𝑟) 

𝑛 = 60 + 40
𝑓 − 𝑓𝑖𝑟

𝑓𝑚 − 𝑓𝑖𝑟
, (𝑓𝑖𝑟 < 𝑓 ≤ 𝑓𝑚)  

𝑛 = 100,         (𝑓𝑚 < 𝑓).        (1) 

Although the values of f in the training data are all in the range 0 to fm, it may happen that the 

ANN when applied to a new sequence gives a value outside this range; Eq. (1) allows for this 

possibility. The accuracy of the resistance prediction ANN models was evaluated using the 

regression (the coefficient of determination – R2) method (see [290]). These ANN drug 

resistance prediction models initially trained in MATLAB were adapted and re-implemented 

in Python before being incorporated into the web application. This is because Python is open 

source, has a large user support community, and is more readily available. MATLAB, on the 

other hand, is proprietary.  
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6.4.3 Determination of levels of agreement between MATLAB and translated Python 
scripts 

A Bland-Altman analysis [313,314] was used to assess the level of agreement between the 

Python-generated models and the ANN models generated previously in MATLAB. Drug 

resistance prediction was done for ten sequences for the protease (PR) and reverse transcriptase 

(RT) enzymes for each drug prediction model both in MATLAB and Python.  

Considering that the ANN resistance prediction models were trained and tested on subtype B 

data, subtype classifiers were also incorporated into the HIV-1 ResPredictor application. 

6.4.4 Development of hidden Markov models to classify HIV-1 subtypes 

These subtype classifiers were trained using HMMs on the same datasets used to train ANNs 

[290] with a few more sequences added to the PR dataset from NCBI [315] to improve its 

performance and accuracy. RT and PR models were trained using 267,398 and 119,206 subtype 

B sequences respectively. HMMs can be used to solve three types of statistical problems 

(evaluation, decoding or uncovering and the estimation problem) [316–318]. The machine 

learning problem being solved is the estimation or learning problem given that we had to find 

the most suitable HMM λ = (A, B, π) that maximizes the probability of obtaining the 

observation sequences of the training set.  

Generally, an HMM consists of the following. 

1. A hidden Markov chain, i.e.  

• a set of hidden states. In this case, these are the positions of the amino 

acids, coded as numbers 1 to 99 for the PR and 1 to 240 for the RT.  

• a transition probability matrix A, the entry aij giving the probability for 

a transition from hidden state i to hidden state j. In this case, the left end 
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of the sequence is considered the starting point, where aij=1 is for two 

consecutive hidden states and aij=0 otherwise. 

• an initial distribution  for the hidden states. In this case, the left end of 

the sequence is considered the starting point, where (1) = 1 and all other 

’s are zero. 

2. An observed process, i.e. 

• an alphabet of observed states. In our case, these are the amino acids in 

the sequences, coded with the one-letter code.  

• an emission probability matrix B, giving for each hidden state j the 

probability of emission of the observed states. In our case, these 

emission probabilities were estimated from the training set as the 

relative frequencies of the amino acids at each position. 

Thus, from our training set, the HMM is fixed. Given a new observed sequence, the probability 

of this observation under the model (A, B, π) can be calculated efficiently using the forward 

algorithm [317,318] as encoded in the MATLAB function hmmdecode [319]. In this case, 

however, there were no insertions, deletions, or gaps in the sequences, this was simplified by 

calculating the product of the emission probabilities for each amino acid in the sequence. The 

more complicated algorithm [318] was used for possible adaptation to aligned sequences with 

insertions at a later stage. The probability of observing a new sequence was obtained using 

MATLAB’s hmmdecode function [319] in the form [PSTATES, logpseq] = hmmdecode 

(sequence, TPM, EPM), with the logarithm returned as logpseq. Python scripts were written 

that re-implemented this function in our application and they were tested to cross-check 

whether the same logarithm probability was returned as for the MATLAB function (to machine 

precision). 
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6.4.5 Determination of a cut-off for subtyping sequences 

The thresholds for classifying the sequences as either subtype B or non-B subtypes were 

determined using receiver operating characteristics (ROC) analysis [320,321]. The log 

probabilities for both HIV-1 subtype B and non-B subtype sequences were generated using 

similar datasets that were used to train the subtype classifier models and sequences from NCBI 

[315] respectively. The non-B subtype sequences comprised all group M amino acid sequences 

for both PR and RT excluding circulating recombinant forms (CRFs) and unique recombinant 

forms (URFs) that were mixed with subtype B to avoid contamination. These sequences were 

truncated to 99 and 240 residues for PR and RT respectively to conform to the format of the 

sequence alignments used during HMM training and drug resistance prediction ANN models 

[290]. The non-B subtype dataset comprised 20,499 and 12,551 sequences for PR and RT virus 

respectively. Given that our data is highly unbalanced with skewed sample distributions, the 

area under the curve (AUC) was more favourable to use [320] compared to precision-recall 

estimates of accuracy. An R script was used to calculate the AUC, threshold, and the 

corresponding confusion matrix. This was done in three subtype categories i.e., B vs A, B vs 

C, B vs all non-B for both PR and RT. All non-B stands for subtype A and C combined. 

6.4.6 Performance testing of HIV-1 ResPredictor with existing subtyping tools 

The performance of our subtype classification models was compared with similar commonly 

used automated subtyping tools: a similarity-based tool (Stanford HIV drug resistance database 

(HIVdb) [322]); phylogenetics based tools (subtype classification using evolutionary 

algorithms (SCUEAL) [323] and Rega HIV subtyping tool (REGA v3) [324]); and a partial 

matching compression prediction algorithm (context-based modeling for expeditious typing 

(COMET)) [309]. This was done using a total of 4000 HIV-1 nucleotide PR and RT polymerase 

(pol) sequences retrieved from NCBI [315], with 1000 sequences in each subtype category i.e., 

subtype B and all non-B subtypes for both PR and RT. The nucleotide sequences were used to 
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allow for comparison with other existing subtyping tools, some of which only accept sequences 

in this format. Pol sequences were also used because our server and some other tools like 

SCUEAL only subtype sequences from this gene. The PR and RT sequences were truncated to 

297 and 720 base pairs (bp) to conform to our server-accepted length. For evaluation purposes, 

the sensitivity (Eq. 2), specificity (Eq. 3), positive predictive value (PPV; Eq. 4), negative 

predictive value (NPV; Eq. 5) and accuracy (Eq. 6) were calculated for each tool.  

 Sensitivity = TP/[TP + FN]                                              (2) 

 Specificity = TN/[TN + FP]                                             (3) 

 Positive predictive value (PPV) = TP/[TP + FP]             (4) 

 Negative predictive value (NPV) = TN/[TN + FN]         (5) 

 Accuracy = [TP + TN]/[TP + FN + TN  + FP]                (6) 

Where TP, TN, FN, and FP are the true positive, true negative, false negative and false positive 

respectively. 

6.5 Results and discussion 

The web application, HIV-1 ResPredictor (Fig 5.1) was developed to be a user-friendly system 

that can be used by both novice and expert users. HIV-1 ResPredictor provides drug resistance 

prediction for HIV-1 sequences for 18 ARVs and 2 subtype classification classifiers since the 

predictions were trained and tested for subtype B. The details about the system and software 

design, development, evaluation of the subtype classifier models were described in my 

previous work [291] but mentioned here to provide context.   
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6.5.1 Initial page and input formatting 

The web server takes input as PR or RT amino acid or nucleic acid sequence(s) in FASTA 

format. The sequence length and type are first assessed for validity. If a nucleotide sequence is 

submitted, it is translated into an amino acid sequence to conform to the drug resistance 

prediction ANN models’ format before predictions are done. In instances where the nucleotide 

sequence contains ambiguous bases such as R, Y, S, W, K, M, B, D, H, V, N, and ./-, a pre-

expansion step is carried out following the International Union of Pure And Applied Chemistry 

(IUPAC) convention. For example, an ambiguous base ‘W’ means it is either a Thymine(‘T’) 

or Adenine(‘A’), as such when a sequence ‘ATGW’ is given it is expanded to two sequences 

‘ATGT’ and ‘ATGA’. Each expanded sequence is considered a single input sequence.  

 

Fig 6.1. HIV-1 ResPredictor web interface. Sequence(s) in FASTA format can either be 
pasted in the input box or uploaded as a file to the application. The type of input sequence(s) 
should be selected by the user before proceeding.  

The workflow of the HIV-1 ResPredictor is shown in Fig 6.2. Several sequences can be 

submitted at the same time only if they are amino acid sequences and nucleic acid sequences 
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without ambiguous bases. Each amino acid is numerically encoded as in [290], and conserved 

columns are removed as done during ANN training [290]. 

Fig 6.2. Workflow of the HIV-1 ResPredictor web application. Protein sequences or nucleic 
acid sequences are accepted as input, validated and/or translated to protein sequence for nucleic 
acid sequence(s). The main step involves subtype classification, sequence encoding and drug 
resistance prediction along with fold resistance score classification and normalization. A 
prediction summary report is finally returned. 

 

The ANN prediction models incorporated in HIV-1 ResPredictor were re-implemented in 

Python and both these and the MATLAB models were assessed to ascertain that the results are 

the same. Bland-Altman plots were generated for each drug-based model and used to assess 

the level of agreement as shown in Fig 6.3 (one PR and RT inhibitor) and S6.1 Fig (PIs) and 

S6.2 Fig (NRTIs and NNRTIs). The mean difference for all the drug-based Bland-Altman plots 

was zero indicating that the MATLAB models [290] and Python models agree and do measure 

the same. In this case, the mean of two measurements was used because it’s the best estimate 

[314] since the true resistance score is unknown. 
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Fig 6.3. Bland Altman plots. Plots of differences between MATLAB and Python ANN models 
vs the mean of the two methods of protease inhibitor (6.3A) and reverse transcriptase inhibitor 
(6.3B). The red line represents the mean difference between these two methods.  
 

6.5.2 Performance of HIV-1 subtype classifiers 

The HIV-1 subtype classifiers were trained using HMMs to distinguish subtype B sequences 

from non-B subtypes since the drug resistance prediction ANN models were trained and tested 

on subtype B data. A threshold with the corresponding sensitivity, specificity and area under 

the curve (AUC) was determined for each group as shown in Table 6.1. For both PR and RT, 

the AUC for subtype B versus subtype A was better (67% and 93% respectively) than all the 

other analysis groups. Overall, the classifier for the RT enzyme performed better than that for 

the protease enzyme and this may have been due to the difference in the size of the training 

datasets. 
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Table 6.1. Summary of the important parameters and values obtained in classifying the 
subtype of protease and reverse transcriptase sequences. 

 PR (Subtype) RT (Subtype) 

Parameter 
analysed 

B vs A B vs C B vs non-B B vs A B vs C B vs non-B 

Threshold 

(log probabilities) 

-27.6 -30.9 -29.7 -51.0 -51.1 -50.0 

Sensitivity (%) 44 56 52 77 77 75 

Specificity (%) 82 74 67 44 81 80  

AUC (%) 67 66 61 93 85 86 

6.5.3 Results page 

The sequences are then processed, and a summary report is returned as shown in Fig 5.2. First, 

the sequence subtype classification is made and reported as part of the final summary report. 

Even if the subtype is not B, the application subsequently predicts resistance of the sequence 

to the various ARVs, but with a comment to the user about the reliability of the predictions.  

A fold resistance score is returned for each PR or RT inhibitor depending on the type of 

sequence(s) being processed, with the corresponding normalized fold resistance score and 

classification as “susceptible”, “intermediate” or “resistant”. Since the fold resistance 

classification cut-off values vary among drugs, the fold resistance scores are normalized. The 

user can download the results as a pdf file, or the results can be sent via email. To demonstrate 

the performance of the HIV-1 ResPredictor, an RT subtype B sequence was processed to 

predict its resistance to HIV-1 RT inhibitors. As shown in Fig 5.4, a report is generated on the 

web page with details about the queried sequence. This sample sequence was classified as 

subtype B with a sensitivity of 75% and specificity of 80%. A summary table for the fold 
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resistance scores with corresponding normalized fold resistance scores and classification is 

displayed for each RT inhibitor. The results in the drug resistance prediction summary table 

can be reordered either alphabetically for the ARV drugs and drug resistance class, or 

numerically ascending for fold resistance score. 

 

Fig 6.4. Resistance prediction results of reverse transcriptase sequence against reverse 
transcriptase inhibitors. The summary report shows the sequence type, subtype classification 
comment, submitted sequence, and drug resistance prediction summary table. 

6.5.4 Comparison of subtyping tools performance results  

Whereas the classification results are reported from our application, their accuracy and that of 

the routinely used subtyping tools (COMET, SCUEAL, HIVdb, and REGA v3) was evaluated 

as reported in Table 6.2 and Stanford HIVdb performed better than all the other tools. Hence a 

link for Stanford HIVdb is provided for concordance and in case not, better subtyping results 
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are obtained. Nevertheless, this does not affect the performance of the drug resistance 

prediction models as these don’t depend on the subtype classification results although the 

accuracy of the prediction for other subtypes is unknown. 

Table 6.2. Comparison of performance of HIV-1 ResPredictor with existing automated 
subtyping tools: classification of protease and reverse transcriptase sequences 

Enzyme 
type 

Metrics 
(%) 

HIV-1 
ResPredictor 

HIVdb 
v8.6 

COMET SCUEAL REGA 
v3 

PR Sensitivity 90.8 99.9 98.7 71.8 84.4 

 Specificity 76.3 99.4 95.3 99.4 60.6 

 PPV 79.3 99.4 95.5 99.2 68.2 

 NPV 89.2 99.9 98.7 77.9 79.5 

 Accuracy 83.6 99.7 97.0 85.6 72.5 

RT Sensitivity 82.3 99.9 99.9 93.7 95.3 

 Specificity 93.5 93.1 91.3 93.8 77.9 

 PPV 92.6 93.5 91.9 93.8 81.2 

 NPV 84.1 99.9 99.9 93.7 94.3 

 Accuracy 87.9 96.5 95.6 93.8 86.6 

 

The accuracy of HIV-1 ResPredictor to classify sequences as subtype B or not B was tested in 

comparison with other routinely used subtyping tools (COMET, SCUEAL, HIVdb, and REGA 

v3). When the tools were tested with PR data, HIVdb had the highest sensitivity (99.9%), 

followed by COMET (98.7%), HIV-1 ResPredictor (90.8%), REGA v3 (84.4%), and SCUEAL 
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(71.8%). HIVdb and SCUEAL had the highest specificity (99.4%) followed by COMET (95.4), 

HIV-1 ResPredictor (76.3%), and REGA v3 (60.6%) as shown in Table 6.2. 

When the tools were tested with RT data, it was noted that HIVdb, COMET, REGA and 

SCUEAL had a higher sensitivity (≥93.7%) than HIV-1 ResPredictor (82.3%). As seen in 

Table 6.3, the specificity values of HIVdb, COMET, HIV-1 ResPredictor and SCUEAL were 

higher (≥91.3%) than that of REGA v3 (77.9%). It was noted that all the tools had unassigned 

sequences. For a sequence to be designated as unassigned in HIV-1 ResPredictor, it had to have 

discordant results for at least one outcome sequence after expansion. SCUEAL labelled such 

sequences as ‘complex’, HIVdb as ‘not applicable’ (‘NA’), COMET as ‘unassigned’ and 

REGA v3 as ‘check the report’. 

 HIVdb had the best predictive algorithm for positive predictive values (PPV=99.4%) for PR 

sequences while for RT sequences, SCUEAL had the best (PPV=93.8%) although with a very 

insignificant difference from HIVdb (PPV=93.5%). Regarding negative predictive values 

(NPV), HIVdb had the best predictive score (NPV=99.9%) for PR sequences while for RT 

sequences, both HIVdb and COMET were the best (NPV=99.9%). For PR sequences, HIV-1 

ResPredictor was better than both SCUEAL and REGA v3 to properly identify a sequence as 

a certain subtype when it is indeed of that subtype (NPV=89.2%). The accuracy (ability to 

correctly assign a subtype to a sequence) of subtyping tools was estimated using the formula 

in equation 5 above. HIVdb had the best accuracy for both PR (99.7%) and RT sequences 

(96.5%), followed by COMET (97% and 95.6% for PR and RT sequences respectively), 

SCUEAL (85.6% and 93.8% for PR and RT sequences respectively), HIV-1 ResPredictor 

(83.6% and 87.9% for PR and RT sequences respectively) and REGA v3 (72.5% and 86.6% 

for PR and RT sequences respectively).  
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A difference between the accuracy of the subtype classifiers incorporated in HIV-1 

ResPredictor and their performance in comparison to other subtyping tools was noted. This 

might be because nucleotide sequences were used in the comparison with other subtyping tools 

whereas when determining their accuracy, amino acid sequences were used. These nucleotide 

sequences may or may not have ambiguous characters which have to be expanded before being 

translated to amino acid sequences. This led to discordant results from the expanded sequences 

hence lowering the performance of our subtype classifiers.  

HIVdb presents the highest accuracy for B and non-B subtypes compared to other subtyping 

tools. All the tools had relatively high sensitivity and specificity values for both PR and RT 

sequences except REGA v3 that had the lowest specificity values for both PR and RT 

sequences. Our subtyping classifiers performed relatively well compared to the best subtyping 

tools given that they had some limitations. When training our subtyping classification models, 

subtype B sequences used were retrieved from HIVdb which resulted in good models. Despite 

the relatively good performance, our classifiers had some limitations because they were trained 

only on subtype B data. The classifiers were also trained only on pol sequences with specific 

lengths that are used for drug resistance prediction. No specific features were considered when 

training our models using HMM, yet other subtyping tools extensively utilise all the necessary 

information they need to perform the subtyping. 

Whereas our subtype classifiers are reported and still used even without the best classification 

results in comparison with other subtyping tools, a link to the best tool which was Stanford 

HIVdb was added. Users are advised to further check the subtype of their sequences from the 

Stanford HIVdb server in case they were not sure of the subtype. This doesn’t affect the drug 

resistance prediction results although the accuracy is only known for subtype B sequences 

which might be misleading. Our work regarding subtype classification using HMM can further 
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be explored and improved for better performance since it shown that it is feasible with 

relatively good and promising results. 

In the previous work [290] done by colleagues in our lab, the accuracy of our prediction models 

in comparison with Shen and colleagues models [299] was demonstrated hence only testing 

usability in this work. A comparison was done between our server and other drug resistance 

prediction servers (HIVdb, geno2pheno[resistance], HIV-GRADE) as shown in Table 6.3. A 

comparison was done for the different drug classes together with checking whether mutation 

information is given or returned, the maximum number of sequences to be uploaded, time 

response and whether an informative report is returned. Apart from HIV-1 ResPredictor and 

geno2pheno resistance, HIVdb and HIV-GRADE accept 500 and <1000 nucleotide 

sequences respectively. Only HIVdb and HIV-GRADE predict for all the drug classes 

considered. A difference was also noted in the run times (averaged over 5 runs) for all the 

prediction servers when tested on 15 PR nucleotide sequences. HIV-1 ResPredictor turns out 

to be the slowest tool, which is mainly because nucleotide sequences have to be translated to 

amino acid sequences given nature of the prediction models incorporated. The fastest tool was 

HIVdb with 1.4 seconds for the 15 nucleotide sequences tested 

 

 

 

 

 

 

 

 

 

 



 

151 
 

Table 6.3. Usability comparison between HIV-1 ResPredictor and other HIV resistance 
prediction servers 

Prediction Server PIs NRTIs NNRTIs INIs Mut Max No. 
sequences 

Time 
responsec 

(Secs) 

Clinical 
report 

HIV-1 

ResPredcitor 

+ + + - - 20a 

1b 

14.9 + 

HIVdb  + + + + + 500 1.4 + 

geno2pheno[resistance] + + + - + 20 7.9 + 

HIV-GRADE + + + + + >1000 2.9 + 

aAmino acid sequences and nucleotide sequences without ambiguous characters 

 bOnly nucleotide sequence with an ambiguous character 
cAveraged over 5 runs with 15 sequences 
 

6.6 Conclusion 

HIV-1 ResPredictor is a user-friendly web application that enables users to make drug 

resistance predictions in patients infected with HIV-1, although the accuracy of the predictions 

is known only if the infection is of subtype B. The application includes a subtype classifier 

developed using HMM. Our classifier performed relatively well in classifying sequences as 

either subtype B or non-B subtype, similar to most tools apart from HIVdb that consistently 

performed well for all cases. From this analysis, clinicians and researchers are advised to use 

our server with other high performance tools like HIVdb to classify sequences and get a 

consensus. 

This web application makes ANN models, that were reported previously [290], accessible to a 

wide range of users. In the era of personalised medicine and genomics, it is increasingly 

important to facilitate easy-to-use tools that can be used to analyse sequence data. Within 
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patient care environments, our application has uses as a point of care decision-support tool, 

aiding physicians in selecting the best ARV regimen on which new patients could be started or 

onto which “ARV-experienced” patients could be switched if the need arises.  Beyond 

personalised medicine, this application has uses in research and clinical practice environments 

as well as public health, potentially reducing the cases of treatment failure and cross-resistance, 

and their associated morbidities, mortality, and resistance-associated costs. Further 

improvement of the ANN models will be done periodically following the availability of more 

data to enhance the accuracy of our server predictions. 
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CHAPTER SEVEN 

DEVELOPMENT OF A BIOINFORMATICS EDUCATION 
WEB PORTAL 

Chapter overview 

Often students, researchers as well as academic staff search for bioinformatics information 

from different sources including e-journals, theses, and software. Availing education portals 

for easy access to bioinformatics learning materials would be of great importance to the 

community. Most bioinformatics applications require tools to analyse and carry out research, 

however students lack skills to make use of these tools. Equipping students with knowledge on 

how to use bioinformatics basic tools helps them as they progress in their careers. To address 

this, a website was designed to provide bioinformatics basic information on how to use the 

different online tools and databases. This website entails information from protocols written 

by former MSc and PhD students in RUBi under the guidance of Prof Özlem Taştan Bishop. 

This web portal can be accessed at https://learn-bioinfo.rubi.ru.ac.za/. 

7.1 Introduction 

Electronic learning (e-learning) started way back in the 1960s and has evolved over time. In 

academic context, e-learning refers to the mode of learning that depends on online 

communication and technologies [325]. Almost all universities embrace e-learning as the mode 

of communication between students and the academic staff. Education research studies involve 

the use of literature, designing experiments and analysing data to answer scientific questions. 

It was recommended by National Research Council that there is a need to transform 

undergraduate life sciences education in the 21st century, and students should work with real 

data and tools for life sciences research [326]. Enormous volumes of data have been 

accumulated in the databases due to technological advancements, but this does not match the 

https://learn-bioinfo.rubi.ru.ac.za/
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analysis pace. These can be used as a starting point to generate positive research outcomes 

hence the need to introduce bioinformatics tools to students [327].  

One of the courses that integrate practical skills in the traditional teaching paradigm is 

bioinformatics. Application-oriented bioinformatics courses have been introduced at the 

undergraduate and graduate levels within existing courses including biology, computer science, 

physics, mathematics, and biochemistry [328–330]. Undergraduate students have been 

introduced to bioinformatics basic concepts, tools, and databases. Bioinformatics reinforces 

active learning by interconnecting theoretical lectures and laboratory sessions.  

7.2 Motivation 

Students normally face problems when carrying out practical lessons in the computer 

laboratory for the bioinformatics module. University laboratories normally do not have specific 

software installed to perform bioinformatics research. A strategy to overcome this problem is 

to use online tools and databases to avoid technical problems. However, being aware of these 

resources is not enough, unless the students gain a deeper understanding of the bioinformatics 

methods as well as guidance on how to fully utilise them.  

7.3 Research aim and objectives 

This work was aimed to familiarise students with the basic terminology and approaches in 

structural bioinformatics by availing this information via an education web portal. This is 

advantageous to students since the knowledge of bioinformatics skills can be carried on even 

after graduation. 

The main objective of this work was to design and develop an education web portal for sharing 

the bioinformatics web resources and databases.  
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7.4 Implementation 

The website was developed using Hypertext Markup Language (HTML), Cascading Style 

Sheets (CSS) with a bootstrap framework and JavaScript. The website content consists of 

information from different protocols on how to use bioinformatics tools and databases to 

research real-life sciences data. Different protocols are presented using a bootstrap treeview 

which shows hierarchical information. Each protocol is presented as a root node, which has 

parent nodes in this case the protocol subtopics with children being information under each 

subtopic. 

Protocols contain detailed descriptions of how to apply bioinformatics tools to biological 

problems. These protocols were written by former MSc and PhD students in RUBi based on a 

template prepared by Prof Özlem Taştan Bishop. This web portal can be accessed at 

https://learn-bioinfo.rubi.ru.ac.za/. 

7.5 Results 

This website features protocols that have detailed descriptions of how to apply bioinformatics 

tools to problems as well as case studies. All protocols demonstrated the use of online web 

servers for calculations to avoid the issue of getting specialised software installed in the 

computer laboratories. These protocols include NCBI and BLAST, multiple sequence 

alignment (MSA), protein data bank (PDB), visualization of protein structures, homology 

detection and structure prediction (HHpred), PRIMO pipeline, protein-ligand interaction, 

protein motif analysis with MEME suite tools, physico-chemical properties, protein 

interactions calculator (PIC), ROBETTA alanine scanning, and single nucleotide 

polymorphism (SNP) effect prediction. 

The initial page gives information about what the web portal offers to the education sector and 

a list of all the protocols provided (Fig 6.1). 

https://learn-bioinfo.rubi.ru.ac.za/
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Fig 7.1. Home page for the bioinformatics web portal. This page entails information on what 
this website offers. 

 

The study protocols page consists of information including an overview for each protocol (Fig 

7.2), and detailed steps to achieve the goals of each protocol (Fig 7.3 and Fig 7.4). Each 

protocol is displayed in a treeview format where information is displayed once the arrow is 

clicked to open the tree branch and hidden when clicked again. 
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Fig 7.2. Study protocols page showing the overall overview of the bioinformatics 
protocols.  
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Fig 7.3. Study protocols page showing information on how to use NCBI and BLAST.  
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Fig 7.4. Study protocols page showing some of the information in the NCBI and BLAST 
protocol.  
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These protocols provide step by step detailed examples of using bioinformatics tools hence 

helping students analyse results of different studies leading to biological insights. When using 

these tools students do not need to install software since all the case studies involve online tools 

and databases.  

The study protocols page is interactive, and each protocol has rich graphical learning content 

with well-elaborated information. This web portal enables students to gain a deeper and critical 

understanding of bioinformatics resources, techniques, and their applications so that they 

appreciate the strengths and limitations of these tools. These protocols also have open-ended 

laboratory exercises designed to help students grasp the key concepts and gain practical skills. 

7.6 Conclusion 

This website will help undergraduate students learn about and how to use several 

bioinformatics resources. Students will also be able to use these resources at their pace and 

convenience hence creating flexibility during the learning process. Learners will participate 

actively in the laboratory since they can access the information before the practical sessions. 

These web-based tools ease the teaching process of bioinformatics at universities since the need 

to install and pay for licenses of the proprietary software is eliminated. 
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CONCLUSIONS, FUTURE WORK, AND REFERENCES 

8.1 Conclusions 

In this work, we have successfully developed a tool – PRIMO-Complexes that models protein 

complexes and biological assemblies. This web server has been designed with user friendly 

features such as an interactive web interface, helpful guiding information at every stage during 

the modeling process and full control of the modeling process. While PRIMO-Complexes uses 

PDB files to model protein complexes, the PDB database curators are phasing them out. Further 

development and research in automating protein modeling should be focused on learning how 

to parse data from PDBx/mmCIF files and integrate these algorithms in the existing web 

servers. PRIMO-Complexes avails users with the option to model large protein complexes like 

viral capsids. This is only the start, and more additions can be made to equip and ease the 

cumbersome process of installing software like PyMOL to align these large structures. 

Other tools and web servers that aid the process of performing bioinformatics research were 

developed including RUBi protein model repository, HIV-1 ResPredictor web application, and 

a bioinformatics education web portal. The RUBi protein repository stores verified theoretical 

protein models that were generated by researchers in RUBi. To the research community, this 

is a great advantage since it ensures reproducibility of research work. This work can be 

expanded by other developers whereby a large repository can be setup with curators to receive 

and verify protein models from the research community. This repository serves as a starting 

point to assist researchers in effortlessly exploring the 3D protein space to do further research 

and analysis. 

The HIV-1 ResPredictor application that facilitates drug resistance predictions in patients 

infected with HIV-1 subtype B was developed. Drug resistance is still a big problem in the 

fight to eradicate HIV infections and mortality hence the need to devise ways to mitigate the 
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problem. In future, HIV-1 ResPredictor application can further be developed to increase 

sensitivity and provide more functionality to predict drug resistance. These easy to use systems 

should be adapted to benefit from intensified research in personalised medicine. 

A bioinformatics education web portal was also successfully setup to help students familiarise 

themselves with the basic terminologies and approaches in structural bioinformatics. This 

portal will enable undergraduate students and researchers to learn how to use several online 

bioinformatics resources. Knowledge about the existence of this information, online resources 

and tools is not enough however, the existence of education web portals such as this one help 

students and researchers to fully utilise them. This web portal can further be expanded to 

include more information and active discussion forums for the researchers.   

8.2 Future work 

In future, development could focus on linking the PRIMO-Complexes to Human Mutation 

Analysis (HUMA) web server and database [331] to analyse new disease-related variations. 

We will also add more options for each stage such as allowing the user to specify a biological 

assembly template. In addition to other improvements based on user requests. The two PRIMO 

versions (modeling monomers and multimeric proteins) will be merged so that the user can 

easily access both pipelines. 

The RUBi protein model repository will grow regularly as models are added by users before 

or after being published. The models will be curated to ascertain the accuracy before being 

uploaded to the repository. The repository will further be connected to automated homology 

modeling pipelines – PRIMO and PRIMO-Complexes. 
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S6.1 Fig. Bland-Altman plots for protease drug resistance prediction models using R. 
Drug resistance prediction was done for ten protease sequences for each drug-based model in 
MATLAB and Python.  
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S6.2 Fig. Bland-Altman plots for reverse transcriptase drug resistance prediction models 
using R. Drug resistance prediction was done for ten reverse transcriptase sequences for each 
drug-based model in MATLAB and Python. 
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