
A FEW POINTS ON POINTFREE PSEUDOCOMPACTNESS

THEMBA DUBE AND PHETHIWE MATUTU

Abstract. We present several characterizations of completely regular pseudocompact frames.

The first is an extension to frames of characterizations of completely regular pseudocompact

spaces given by Väänänen [19]. We follow with an embedding-type characterization stating

that a completely regular frame is pseudocompact if and only if it is a P -quotient of its Stone-

Čech compactification. We then give a characterization in terms of ideals in the cozero parts

of the frames concerned. This characterization seems to be new and its spatial counterpart

does not seem to have been observed before. We also define relatively pseudocompact quo-

tients, and show that a necessary and sufficient condition for a completely regular frame to

be pseudocompact is that it be relatively pseudocompact in its Hewitt realcompactification.

Consequently a proof of a result of Banaschewski and Gilmour [6] that a completely regular

frame is pseudocompact if and only if its Hewitt realcompactification is compact, is presented

without the invocation of the Boolean Ultrafilter Theorem.

This paper is, in a way, a sequel to our paper [11] in which we gave several characterizations

of pseudocompact frames with no separation axiom imposed. In this paper we restrict to

completely regular frames. We start by extending to frames Väänänen’s [19] characterizations

of pseudocompactness (Proposition 2.1). Our proofs in this regard are facilitated by a recent

result of Naidoo’s [16] stating that a totally bounded Cauchy complete uniform frame is

compact. This is the frame version of the classical result that a complete precompact uniform

space is compact.

Following that, we define P -quotients of frames and give some embedding-type character-

izations including one stating that a completely regular frame is pseudocompact if and only

if it is a P -quotient of its Stone-Čech compactification (Corollary 2.6). We then observe, en

passant, that if a completely regular frame is a P -quotient of each of its compactifications,

then it admits only one uniformity, so that in fact it has only one compactification. Another

embedding-type characterization is that a completely regular frame is pseudocompact if and

only if whenever it is a quotient, then it is an almost coz-codense quotient (Proposition 2.8).
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We then characterize pseudocompactness in terms of ideals in cozero parts of frames, and

prove that pseudocompact frames are exactly those the maximal ideals of the cozero parts of

which are precisely the prime σ-ideals (Proposition 2.11). Incidentally, this result appears to

be new, and its spatial counterpart does not seem to have been observed before.

A frame homomorphism transfers ideals of the cozero part of its codomain to ideals of

the cozero part of its domain in a natural way. We establish that a necessary and sufficient

condition for a completely regular frame to be pseudocompact is that maximal ideals in its

cozero part are transferred in this natural way to maximal ideals in the cozero part of its

Stone-Čech compactification (Proposition 2.12).

In section 3 we consider the frame equivalent of a subspace being relatively pseudocom-

pact in the sense that every continuous function on the containing space is bounded on the

subspace. This consideration, in conjunction with certain observations about the Hewitt real-

compactification of a frame, enables us to obtain, without invocation to the Boolean Ultrafilter

Theorem (BUT), a proof of a result of Banaschewski and Gilmour [6] (they used BUT) that

a completely regular frame is pseudocompact if and only if its Hewitt realcompactification

is compact. This in turn is true precisely when the frame is relatively pseudocompact in its

Hewitt realcompactification (Proposition 3.3).

1. Preliminaries

We recall some of the definitions that we shall need and refer to Johnstone [14] and Picado,

Pultr and Tozzi [17] for a general background on frames. Pultr [18] gives a more algebraic

treatment of the subject. The properties of σ-frames that we need can all be culled from

Banaschewski and Gilmour [5]. Good references for uniform frames include Banaschewski [3].

A frame is a complete lattice L in which the distributive law

a ∧
∨

S =
∨
{a ∧ x | x ∈ S}

holds for all a ∈ L and all S ⊆ L . We denote the top element and the bottom element of a

frame by 1L and 0L respectively; omitting the subscript if no confusion may arise. If X is a

topological space, OX will denote the frame of its open subsets.

Throughout this commentary L will denote a frame. A cover C of L is a subset with∨
C = 1. A cover C refines a cover D if for each c ∈ C there exists d ∈ D such that c ≤ d.

A subset S of L is locally finite if there is a cover C such that each element of C meets

only finitely many elements of S. We say L is paracompact if each cover has a locally finite
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refinement. It is compact (resp. countably compact) if each cover (resp. each countable cover)

has a finite subcover, and it is Lindelöf if every cover has a countable subcover.

We say L is regular if, for each a ∈ L, a =
∨
{x ∈ L | x ≺ a}, where x ≺ a means that

there exists s ∈ L such that x ∧ s = 0 and s ∨ a = 1. This is equivalent to x∗ ∨ a = 1

for the pseudocomplement x∗ =
∨
{w ∈ L | w ∧ x = 0} of the element x. It is completely

regular if, for each a ∈ L, a =
∨
{x ∈ L | x ≺≺ a}, where x ≺≺ a means that there is a

scale (cq|q ∈ Q ∩ [0, 1]) such that x = c0, a = c1 and cq ≺ cp whenever q < p. It is normal if

whenever a ∨ b = 1, then there are elements u and v such that u ∧ v = 0, u ∨ a = v ∨ b = 1.

A frame homomorphism is a map between frames that preserves finite meets, including the

top element, and arbitrary joins, including the bottom element. A frame homomorphism is

dense if it maps only the bottom to the bottom. Associated with a frame homomorphism

h : L → M is its right adjoint h∗ : M → L characterized by: h(x) ≤ y ⇔ x ≤ h∗(y).

A quotient of L is a pair (h,M) where h : L → M is an onto frame homomorphism. When

we say a quotient h : L → M has a property of frames (resp. of homomorphisms) we mean

that M (resp. h) has that property. The quotients L →↑a, given by x 7→ a ∨ x, for each

a ∈ L are said to be closed.

Because we want our study to stay in the point-free context (so that, among other things,

we do not refer to classical reals), we shall follow the practice in Banaschewski and Gilmour

[5] of defining pseudocompact frames and cozero elements of frames in terms of the frame

of reals L(R), which is the frame generated by the ordered pairs (p, q) of rational numbers

p, q ∈ Q subject to the relations:

(i) (p, q) ∧ (s, t) = (p ∨ s, q ∧ t),

(ii) (p, q) ∨ (s, t) = (p, t) whenever p ≤ s < q ≤ t,

(iii) (p, q) =
∨
{(s, t) | p < s < t < q},

(iv) 1L(R) =
∨
{(p, q) | p, q ∈ Q}.

An element a ∈ L is a cozero element if there is a frame homomorphism h : L(R) → L

such that a = h
(
(−, 0) ∨ (0,−)

)
, where (−, 0) =

∨
{(p, 0) | p < 0 in Q} and (0,−) =∨

{(0, q) | 0 < q in Q}. The cozero part of L, denoted CozL, is the sub-σ-frame consisting of

all the cozero elements of L. A useful characterization is that a ∈ Coz L if and only if there

is a sequence (an) in L such that a =
∨

an and ak ≺≺ ak+1 for each k.
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Turning to uniform frames, the star of an element a ∈ L in a cover C of L is the element

Ca =
∨
{x ∈ C | x ∧ a 6= 0}. If A and B are covers of L, AB denotes the cover consisting of

the stars of B in A. We then say A star-refines B, written A ≤∗ B, in case AA refines B.

For a collection U of covers of L we define the relation CU, or simply C, on L by a C

b iff Ua ≤ b for some U ∈ U. We say U is admissible if, for each a ∈ L, a =
∨
{x ∈

L | xCa}. A uniformity on L is an admissible collection of covers which is a filter with respect

to the refinement pre-order and such that each cover in the collection has a star-refinement

in the collection. A uniform frame is a pair (L, U) consisting of a frame and a uniformity

on it. The covers in U are then called uniform covers. We shall at times allow notational

confusion between a uniform frame and its underlying frame and speak of a uniform frame

L. A frame homomorphism between uniform frames is called uniform if it maps uniform

covers to uniform covers, and a surjection if it is onto both for the underlying frames and

the uniformities. A uniform frame is said to be complete if any dense surjection to it is an

isomorphism. A completion of a uniform frame L is a dense surjection M → L with M

complete. Any uniform frame L has a completion which is denoted by CL → L.

A filter F in L converges if it meets every cover of L. A filter in a uniform frame is Cauchy

if it meets every uniform cover. A uniform frame is Cauchy complete if every Cauchy filter

converges. It is totally bounded (or precompact) if every uniform cover has a finite uniform

refinement.

Lastly, recall that a cover A of L is normal if there is a sequence (An) of covers of L such

that An+1 ≤∗ An for each n, and A1 refines A. The collection of normal covers of a completely

regular frame is a uniformity called the fine uniformity on L.

2. Equivalences of pseudocompactness

We start by recalling that for a frame L, a frame homomorphism h : L(R) → L is said to

be bounded if there exist p, q ∈ Q such that h(p, q) = 1L. The frame is then called pseudo-

compact in case all frame homomorphisms L(R) → L are bounded. Clearly, a subframe of a

pseudocompact frame is pseudocompact.

Banaschewski and Pultr [8] have shown that a completely regular frame is pseudocompact

if and only if it admits only totally bounded uniformities, if and only if every normal cover

has a finite normal refinement. Walters-Wayland [20] has shown that a completely regular
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frame L is pseudocompact if and only if the Stone-Čech map β : βL → L is coz-codense,

where the latter means that the only cozero element mapped to the top is the top.

The following characterization is the frame version of Proposition 2 in [19].

Proposition 2.1. The following are equivalent for any completely regular frame L:

(1) L is pseudocompact.

(2) For any homomorphism h : M → L with M Lindelöf, the frame ↑h∗(0) is compact.

(3) For any homomorphism h : M → L with M hereditarily Lindelöf, the frame h[M ] is

compact.

(4) For any homomorphism h : M → L with M countably generated, the frame h[M ] is com-

pact.

(5) For any homomorphism h : M → L, where M is the underlying frame of a uniform frame

(M, U), the uniform frame (h[M ], h[U]) is totally bounded.

(6) For any homomorphism h : M → L, where M is the underlying frame of a Cauchy com-

plete uniform frame, the frame ↑h∗(0) is compact.

Proof. (1) ⇒ (2): We shall use the fact that a completely regular frame is compact if

and only if it is pseudocompact and Lindelöf (see [5, Remark 1]). Because closed quotients

of Lindelöf frames are Lindelöf, it suffices to show that ↑h∗(0) is pseudocompact. We claim

that a frame that has a dense pseudocompact quotient is itself pseudocompact. To prove this

we use Proposition 4.1(3) in [11]. So let N be a pseudocompact frame and g : K → N be

a dense onto homomorphism. Then for any completely regular countable filterbase F in K,

g[F ] is a completely regular countable filterbase in N since frame homomorphisms preserve

the completely below relation. Hence
∨
{g(t)∗ | t ∈ F} 6= 1. Since dense onto homomor-

phisms preserve pseudocomplements, it follows that g(
∨
{t∗ | t ∈ F}) 6= 1, and therefore∨

{t∗ | t ∈ F} 6= 1, as required. Now h[M ] is pseudocompact because it is a subframe of the

pseudocompact frame L. Furthermore, the homomorphism h̄ : ↑h∗(0) → h[M ], mapping as

h, is dense onto, and so ↑h̄∗(0) is pseudocompact. But h̄∗(0) = h∗(0); so the result follows.

(2) ⇒ (3): The frame h[M ] is Lindelöf since it is a quotient of the hereditarily Lindelöf

frame M . Let i : h[M ] → L be the inclusion map. By the hypothesis we have that ↑i∗(0) is

compact. Since i∗(0) = 0, it follows that h[M ] is compact.
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(3) ⇒ (4): This is so because a countably generated frame is hereditarily Lindelöf, as one

checks easily.

(4) ⇒ (1): Let f : L(R) → L be a frame homomorphism. Since L(R) is countably

generated, we have, by the hypothesis, that f [L(R)] is compact. The collection {(−n, n) | n ∈

N} is a cover of L(R), so {f(−n, n) | n ∈ N} is a cover of the compact frame f [L(R)]. Hence

f(−k, k) = 1L for some k ∈ N since the elements f(−n, n) form an increasing sequence.

Therefore L is pseudocompact.

(1) ⇒ (5): If L is pseudocompact and h : M → L is a homomorphism, then h[M ] is

pseudocompact being a subframe of a pseudocompact frame. Hence whatever uniformity it

admits is totally bounded.

(5) ⇒ (6): Consider ↑h∗(0) as a uniform frame with the uniformity inherited from (M, U).

By Theorem 3.3 in [16] it suffices to show that ↑h∗(0) is totally bounded and Cauchy complete.

That it is Cauchy complete holds since every closed quotient of the underlying frame of a

Cauchy complete uniform frame is Cauchy complete in the inherited uniformity. Now the

map h̄ : ↑h∗(0) → h[M ] is a dense uniform homomorphism. Since the hypothesis is that h[M ]

is totally bounded, it follows from Lemma 3.1 and Theorem 3.1 in [16] that ↑h̄∗(0) is totally

bounded. Therefore it is compact. As before, the result is proved since h∗(0) = h̄∗(0).

(6) ⇒ (1): We shall show that every normal cover of L has a finite normal refinement.

To this end think of L as a uniform frame with the fine uniformity. Let h : CL → L be

the completion of L. Then CL is Cauchy complete; and so, by the hypothesis, ↑h∗(0) is

compact. As above, let h̄ : ↑h∗(0) → L map as h. Let U be a normal cover of L, so that

U is a uniform cover. Find a uniform cover V of CL such that h[V ] refines U . The set

W = {h∗(0) ∨ v | v ∈ V } is a cover of ↑h∗(0) such that h̄[W ] refines U . By compactness W

has a finite subcover T . Again by compactness, T is a normal cover of ↑h∗(0), and therefore

h̄[T ] is a finite normal cover of L that refines U . �

A reader who is familiar with the Hewitt realcompactification of a frame, and the fact

that it is Cauchy complete in a certain uniformity, will observe that property (6) in the above

proposition enables us to deduce that the Hewitt realcompactification of a pseudocompact

frame is compact. We will elaborate on this in section 3.

Remark 2.2. The result of Naidoo’s cited in the proof of (5) ⇒ (6) actually tells us more.
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Calling a frame Dieudonné complete in case it admits a Cauchy complete uniformity (termi-

nology straight out of topology), we have that a Dieudonné complete frame is pseudocompact

iff it is compact, iff it is countably compact. Because “compact” ⇒ “countably compact” ⇒

“pseudocompact” always, we verify the outstanding implication. Let L be Dieudonné com-

plete and pseudocompact. Then, with respect to any Cauchy complete uniformity it admits,

L is totally bounded since it is pseudocompact. So L is compact.

Remark 2.3. Since a complete uniform frame is Cauchy complete, and since a frame is

paracompact if and only if it admits a complete uniformity, we deduce from Naidoo’s result

that a paracompact pseudocompact frame is compact. This was first proved by Banaschewski

and Pultr [8] by a different line of reasoning.

Next, we turn our attention to embedding-type characterizations for which we shall need

the following definition.

Definition 2.4. A quotient h : L → M of L is a P -quotient (resp. P ℵ0-quotient) if ev-

ery normal cover (resp. every countable normal cover) of M is refined by the image of some

normal cover of L.

A reader with a topological outlook will recognize these definitions as nothing more than

frame-theoretic articulations of some of the characterizations (see Alo and Shapiro [1]) of

P -embedded (resp. P ℵ0-embedded) subspaces.

Before presenting the characterizations, we remind the reader that a quotient h : L → M

is a C-quotient (resp. a C∗-quotient) if for every frame homomorphism (resp. every bounded

frame homomorphism) f : L(R) → M , there is a frame homomorphism f̃ : L(R) → L

such that hf̃ = f . This captures precisely the notions of C-embedded and C∗-embedded

subspaces. On the other hand, a quotient is coz-onto if every cozero element of the codomain

is the image of some cozero element of the domain. This in turn captures the notion of

z-embedded subspaces.

Pivotal to our proofs will be the following observation: If A and B are covers of a frame

L and B star-refines A, then there is a cozero cover of L that refines A. Indeed, for each

b ∈ B choose ab ∈ A such that Bb ≤ ab. Then b ≺≺ ab; and therefore there is a cozero
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element cb such that b ≤ cb ≤ ab. This in fact shows that a cover that has a star-refinement

of cardinality m has a cozero refinement of cardinality at most m. In particular then, and

this we emphasize, a cover which is refined by a finite (resp. countable) normal cover, is also

refined by a finite (resp. countable) cozero cover.

Our embedding-type characterization will be an immediate corollary to the following propo-

sition which we state more generally than is really needed to deduce the characterization.

Proposition 2.5. The following are equivalent for a pseudocompact quotient h : L → M

of a completely regular frame L:

(1) h is coz-onto.

(2) h is a C∗-quotient map.

(3) h is a C-quotient map.

(4) h is a P -quotient map.

Proof. (1) ⇔ (2) ⇔ (3): If h is coz-onto, then it is a C-quotient map by Proposition

4.10 in [12], and therefore a C∗-quotient map. On the other hand, since every C∗-quotient

map is coz-onto, the equivalences hold.

(2) ⇒ (4): Let A be a normal cover of M . Then, since M is pseudocompact, there is a

finite normal cover B of M that refines A. So, by what we observed above, there is a finite

cozero cover C of M that refines A. Therefore, by Proposition 7.1.1(6) in [2], there is a finite

cozero cover D of L such that h[D] refines C, and hence A. But now countable cozero covers

of a completely regular frame are normal; so the result follows.

(4) ⇒ (2): Let C be a finite cozero cover of M . Then C is a normal cover, and so there is a

normal cover A of L such that h[A] refines C. For each c ∈ C let ac =
∨
{x ∈ A | h(x) ≤ c}.

Then Ã = {ac | c ∈ C} is a finite normal cover of L such that h[Ã] refines C. Since finite

normal covers of L generate a uniformity on L, Ã is refined by a finite cozero cover. Thus

C is refined by the image of a finite cozero cover, and therefore M is a C∗-quotient again by

Proposition 7.1.1(6) in [2]. �

Notice that in the proof of (4) ⇒ (2) in the above result, the pseudocompactness of M is

not used. We therefore have that, in general, every P -quotient is also a C∗-quotient.
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Corollary 2.6. A completely regular frame is pseudocompact iff it is a P -quotient of its

Stone-Čech compactification.

Proof. The forward implication follows from Proposition 2.5 because every completely regular

frame is a C∗-quotient of its Stone-Čech compactification by Corollary 8.2.7 in [2].

Conversely, let A be a normal cover of L. Then there is a normal cover C of βL whose

image refines A. Hence, by compactness, there is a finite cover B of βL whose image refines

A. Since all covers of a compact frame are normal and images of normal covers are normal,

it follows that A has a finite normal refinement, and hence L is pseudocompact. �

Remark 2.7. The last part of the proof in the foregoing result actually shows that if a

frame is a P -quotient of any of its compactifications, then it is pseudocompact. On the other

hand though, if L is a P -quotient of each of its compactifications, then L admits only one

uniformity. To see this, let U be a uniformity on L. Then this uniformity is totally bounded

since L is pseudocompact under the hypothesis. Now let h : M → L be the completion of

the uniform frame (L, U). Then h : M → L is a compactification of L. For any normal cover

A of L, there is a normal cover B of M such that h[B] refines A. Since the uniformity on M

consists of all the covers, B is a uniform cover, and therefore A ∈ U. Consequently U is the

fine uniformity on L.

Another embedding-type characterization of pseudocompact frames is given by the fol-

lowing proposition which should be contrasted with Proposition 4.10 in [12]. A frame homo-

morphism h : L → M is called almost coz-codense if for every c ∈ Coz L with h(c) = 1, there

exists d ∈ Coz L such that c ∨ d = 1 and h(d) = 0.

Proposition 2.8. A completely regular frame L is pseudocompact iff every quotient map

h : M → L is almost coz-codense.

Proof. (⇐): Under this hypothesis the Stone-Čech map βL → L is almost coz-codense,

and therefore codense since it is dense. Therefore L is pseudocompact.

(⇒): Let c ∈ Coz M such that h(c) = 1. Let (cn) be a sequence of cozero elements of

M such that cn ≺≺ cn+1 for each n, and c =
∨

cn. Then h(cn) ≺≺ h(cn+1) for each n and
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h(cn) = 1. By pseudocompactness there exists k ∈ N such that h(ck) = 1. Since ck ≺≺ c,

there exists s ∈ Coz M such that s ∧ ck = 0 and s ∨ c = 1. Thus, h(s) = h(s) ∧ h(ck) = 0;

showing that h is almost coz-codense. �

Remark 2.9. The foregoing result appears in the “pointed version” in [9], where the spatial

counterparts of the statements involved are also shown to be equivalent to what the authors

call property (β). We have not been able to determine if the three equivalences can be ex-

tended to frames. The frame translation of property (β) is that a quotient h : L → M satisfies

property (β) if for every c, d ∈ Coz L with h(c) ∨ h(d) = 1, there exist u, v ∈ Coz L such that

u ∨ v = 1, h(u) ≤ h(c) and h(v) ≤ h(d).

Now we characterize pseudocompact frames in terms of ideals. Recall that an ideal in a

lattice L is called prime if whenever the meet of two elements belongs to the ideal, then at

least one of the elements also belongs to the ideal. Further, an ideal in a lattice with countable

joins is said to be a σ-ideal if it contains all the joins of its countable subsets.

Given a frame homomorphism h : L → M and an ideal I in CozM , we denote by h#I the

ideal of CozL given by h#I = {x ∈ Coz L | h(x) ∈ I}. This, of course, is an adaptation of

Gillman and Jerison’s [13] notation. We aim to show that a completely regular frame L is

pseudocompact if and only if for each maximal ideal I in CozL, the ideal β#I is maximal in

βL where β : βL → L is the Stone-Čech compactification of L. To this end we shall need the

following result from [12].

Lemma 2.10. Let L be a frame. If I is a prime σ-ideal in CozL, then I is a maximal

ideal in CozL.

Based on this we have the following characterization of pseudocompactness. It should

be contrasted with Marcus’ [15] result that a completely regular frame is pseudocompact iff

every maximal ideal in its cozero part is σ-proper, where the latter means that each countable

subset of the ideal has join strictly below the top.

Proposition 2.11. A frame is pseudocompact iff maximal ideals in its cozero part are pre-

cisely the prime σ-ideals.
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Proof. (⇒): Let L be pseudocompact. Then prime σ-ideals of CozL are maximal by Lemma

2.10. Now let I be a maximal ideal in CozL. Then I is prime. To show that I is a σ-ideal

let S be a countable subset of I. If we assume that
∨

S /∈ I, then there exists a ∈ I such that

a ∨
∨

S = 1 since I is maximal. So by pseudocompactness there is a finite T ⊆ S such that

a ∨
∨

T = 1. But this is not possible since T ∪ {a} is a finite subset of the proper ideal I.

(⇐): Let L be a frame with the hypothesized property. Let (cn) be a sequence of cozero

elements of L with
∨

cn = 1. If we assume that no finitely many cn cover the frame, then the

ideal I of CozL generated by the cn is proper. Let K be a maximal ideal in CozL such that

I ⊆ K. Then 1 =
∨

cn ∈ K, which is false. Hence L is pseudocompact. �

Part of the proof of the following characterization, although restricted to a special case,

shows that, in fact, if L is pseudocompact and h : M → L is an onto homomorphism, then

h#I is a maximal ideal in CozM for each maximal ideal I in Coz L.

Proposition 2.12. A completely regular frame L is pseudocompact iff β#I is a maximal

ideal in Coz βL for each maximal ideal I in CozL.

Proof. (⇒): Clearly β#I is prime since I is prime. For any countable S ⊆ β#I we have

that β(s) ∈ I for each s ∈ S, so that β(
∨

S) =
∨

β[S] ∈ I by Proposition 2.11. Hence∨
S ∈ β#I, showing that β#I is a maximal ideal in CozL by Lemma 2.10.

(⇐): We prove this by showing that β is coz-codense. Think of βL as RJ (Coz L), the frame

of regular ideals of CozL (see, for instance, [7] p.4). Now let β(I) = 1 for some I ∈ Coz βL.

Suppose, by way of contradiction, that I 6= 1βL. Then 1 /∈ I, and hence by Lemma 5 in [7]

there is a maximal ideal K in CozL such that I ⊆ K. Then β#K is a maximal ideal in

CozβL. Since
∨

I = 1 /∈ K, it follows that I /∈ β#K. Since β#K is maximal, this implies

that there exists U ∈ β#K such that I ∨ U = 1βL. Hence there exist a ∈ I and b ∈ U

such that a ∨ b = 1. But now U ∈ β#K implies
∨

U ∈ K. So a and
∨

U are elements of the

proper ideal K that have join equal to the top; which is not possible. Consequently, I = 1βL. �

3. Pseudocompactness and relative pseudocompactness in frames
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In this section we look briefly, from a frame-theoretic vantage point, at the concept of rel-

ative pseudocompactness (see Blair and Swardon [10]) which, spatially, is defined as follows:

A subspace S of a topological space X is relatively pseudocompact if for every continuous

function f : X → R, the restriction of f to S is bounded. We shall take as our definition a

direct translation of this.

Definition 3.1. A quotient h : L → M of L is relatively pseudocompact (in L) if for

every frame homomorphism f : L(R) → L, the composite hf is bounded.

To demonstrate that this concept (just like pseudocompactness) can be treated without

invoking the reals, we shall establish a criterion for relative pseudocompactness which, if one

had wished to avoid the usage of maps from L(R), could have been adopted as the definition,

and then use that in our computations.

The criterion in question is lifted from spaces [10] and states that a subspace is relatively

pseudocompact if and only if its closure in the Hewitt realcompactification of the containing

space is compact.

We remind the reader how υL, the Hewitt realcompactification of a completely regular frame

L, is constructed (see [6] or [15] for details). Recall first that a nucleus on a frame L is a map

j : L → L such that, for all a, b ∈ L, (1) a ≤ j(a) = j(j(a)), and (2) j(a∧b) = j(a)∧j(b). The

set Fix(j) = {a ∈ L | j(a) = a} is then a frame with meet as in L and, for any S ⊆ Fix(j),∨
Fix(j) S = j(

∨
L S). Furthermore, j : L → Fix(j) is an onto frame homomorphism.

The frame of σ-ideals of CozL is denoted byHCoz L. The map ` : HCoz L → HCoz L given

by J 7→ [
∨

J ] ∩
⋂
{P ∈ HCoz L | P ⊇ J, P maximal}, where [t] = {x ∈ Coz L | x ≤ t}, is a

nucleus. Then υL is defined to be the frame Fix(`), and the Hewitt realcompactification of L

is the dense onto homomorphism υ : υL → L given by join. For each c ∈ Coz L, [c] ∈ Coz υL.

In fact, the cozero elements of υL are precisely the [c] for c ∈ Coz L.

Notice that the quotient map υ : υL → L is a C-quotient map. We establish this claim

by using Theorem 8.2.12 in [2]. If {cn | n ∈ N} is a countable cozero cover of L, then

{[cn] | n ∈ N} is a countable cozero cover of υL for which υ([cn]) = cn for each n. To see that

the [cn] do indeed cover υL, let J be their join in υL. Since cn ∈ J for each n and
∨

cn = 1,

J cannot be a proper ideal as it is a σ-ideal.
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Using the definition, one sees immediately that if L or M is pseudocompact, then the

quotient L → M is relatively pseudocompact.

In the proof of the following result we shall need the well-known fact that a uniform frame

is totally bounded if and only if every uniform cover has a finite (not necessarily uniform)

subcover. The non-trivial implication is verified as follows: Given a uniform cover U of a uni-

form frame L with the latterly stated property, let V be a uniform star-refinement of U and

v1, . . . , vk be finitely many elements of V such that v1 ∨ · · · ∨ vk = 1. For each i ∈ {1, . . . , k}

let ui be an element of U such that V vi ≤ ui. Then {v∗i , ui} is a uniform cover of L for each

i as it is refined by V . Thus {v∗1, u1} ∧ · · · ∧ {v∗k, uk} is a uniform cover of L which refines

{u1, . . . , uk} since v∗1 ∧ · · · ∧ v∗k = 0. Thus U has a finite uniform refinement.

Proposition 3.2. A quotient h : L → M is relatively pseudocompact iff ↑(hυ)∗(0) is compact.

Proof. (⇐): Let f : L(R) → L be a frame homomorphism. Since L(R) is realcompact,

there is a frame homomorphism f̃ : L(R) → υL such that υf̃ = f . Since {(p, q) | p, q ∈ Q} is

a cover of L(R), {f̃(p, q)∨υ∗h∗(0) | p, q ∈ Q} is a (directed) cover of ↑(hυ∗(0). By compactness

there exists s, t ∈ Q such that f̃(s, t)∨υ∗h∗(0) = 1υL. This implies that υf̃(s, t)∨h∗(0) = 1L,

which in turn implies that f(s, t) ∨ h∗(0) = 1L, whence hf(s, t) = 1M as desired.

(⇒): We will show that ↑ (hυ)∗(0) admits a uniformity in which it is Cauchy complete

and totally bounded. The uniformity in question is that inherited from υL equipped with its

real uniformity (see Banaschewski [4] for the definition and properties of the real uniformity).

Since υL is realcompact, it is Cauchy complete in its real uniformity by Proposition 4 in [4].

Hence ↑(hυ)∗(0) is Cauchy complete in the inherited uniformity. To show total bounded-

ness it suffices to show that, for a given positive integer m and some frame homomorphism

f : L(R) → υL, the subbasic uniform cover {(hυ)∗(0)∨ f(p, q) | (p, q) ∈ Cm} has a finite sub-

cover. Recall that Cm = {(p, q) | q− p < 1
m
}. Applying the hypothesis to the composite hυf ,

we can produce p, q ∈ Q such that hυf(p, q) = 1M . Now if x is an element of Cm that misses

(p, q), then (hυ)f(x) = 0, so that f(x) ≤ (hυ)∗(0), and hence (hυ)∗(0) ∨ f(x) = (hυ)∗(0).

Clearly, there are finitely many elements x1, . . . , xn of Cm such that (p, q) ≤ x1 ∨ · · · ∨ xn. As

a consequence, {(hυ)∗(0), (hυ)∗(0)∨f(x1), . . . , (hυ)∗(0)∨f(xn)} is a finite subcover extracted

from {(hυ)∗(0) ∨ f(p, q) | (p, q) ∈ Cm}. �
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Now we demonstrate via the characterization in Proposition 3.2 that a pseudocompact

quotient is relatively pseudocompact, and that a quotient of a pseudocompact frame is rel-

atively pseudocompact. Having observed these from the definition, this might seem to be a

pointless endeavor (no pun intended), but that is not so because from the series of observa-

tions in this regard will emerge a proof, not using the Boolean Ultrafilter Theorem, that a

frame is pseudocompact if and only if its Hewitt realcompactification is compact. This latter

fact was proved by Banaschewski and Gilmour [6] using the Boolean Ultrafilter Theorem.

We start by showing that a closed quotient of a realcompact frame is realcompact. Actually

we do a little more. Call a quotient h : L → M of L extension-closed in case for every cover

C of M , h∗[C] is a cover of L. Closed quotients are obviously extension-closed. We then have

that an extension-closed quotient L → M of a realcompact frame is realcompact. Indeed, if

F is a filter of M that meets every countable cozero cover of M , then the inverse image of F

is a filter of L that meets every countable cozero cover of L. Therefore, by Proposition 5 in

[6], it meets every cover of L. But then this implies that F meets every cover of M ; showing

M to be realcompact again by Proposition 5 in [6].

Next, recall that we observed earlier that a frame with a dense pseudocompact quotient is

itself pseudocompact. Now if the quotient h : L → M is pseudocompact, then ↑(hυ)∗(0) is

pseudocompact because the map hυ : ↑(hυ)∗(0) → M is dense. Since υL is realcompact, it

follows that ↑(hυ)∗(0) is realcompact and pseudocompact, and is therefore compact.

On the other hand, if L is pseudocompact then so is υL because υ is dense. Thus, υL is

compact, so that if h : L → M is a quotient of L, then ↑(hυ)∗(0) is compact.

Proposition 3.3. The following are equivalent for a completely regular frame L:

(1) L is pseudocompact.

(2) υL is compact.

(3) L is relatively pseudocompact in υL.

(4) For every maximal ideal I in CozL, there is a σ-proper maximal ideal I in Coz υL such

that υ[I] = I.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are immediate from the discussion above.

(3) ⇒ (1): Let ζ : K → υL denote the Hewitt realcompactification of υL. Then ζ is an

isomorphism since υL is realcompact. Now the hypothesis implies that ↑(υζ)∗(0) is compact.



A FEW POINTS ON POINTFREE PSEUDOCOMPACTNESS 15

Since both ζ and υ are dense, this implies that ↑0K = K is compact, and hence υL is compact.

Therefore υ : υL → L is a compactification of L for which the compactification map is a C∗-

quotient map. Thus, by Corollary 8.2.7 in [2], υL is the Stone-Čech compactification of L.

But the map υ : υL → L is coz-codense, so L is pseudocompact.

(1) ⇒ (4): If (1) holds then so does (2), and hence υL is (isomorphic to) βL. Hence by

Proposition 2.12 we have that υ#I is a maximal ideal in Coz υL. By pseudocompactness,

υ#I is σ-proper. Since υ is coz-onto, we have that υ[υ#I] = I by Proposition 3.7(2) in [12].

(4) ⇒ (1): Let I be a maximal ideal CozL and I be a σ-proper maximal ideal in Coz υL

such that υ[I] = I. Then I is σ-proper, lest there exist a sequence (an) in I such that
∨

an = 1,

leading to a contradiction as follows: For each n let [cn] ∈ I such that υ([cn]) = an, that is

cn = an. Consequently,
∨
{[cn] | n ∈ N} = 1υL, contradicting the fact that I is σ-proper. �

Blair and Swardson [10] have shown that a z-embedded subspace is pseudocompact if

and only if it is relatively pseudocompact and well embedded. This result extends to frames.

To prove that, we shall need the following lemma.

Lemma 3.4. Every C-quotient is a P ℵ0-quotient.

Proof. Let h : L → M be a C-quotient. Let A be a countable normal cover of L and

B = {b1, b2, . . .} be a countable cozero cover of M that refines A. Since h is coz-onto, there

exists, for each n, cn ∈ Coz L such that h(cn) = bn. Put c =
∨

cn and notice that c is a cozero

element of M such that h(c) =
∨

bn = 1. Since h is almost coz-codense, there exists d ∈ Coz L

such that c ∨ d = 1 and h(d) = 0. Thus C = {d, b1, b2, . . .} is a countable cozero cover, and

hence a countable normal cover of L the image of which refines A. �

It is apposite to remark that the proof of this lemma is the only instance, in this pa-

per, of an almost verbatim translation of a proof in spaces.

Proposition 3.5. Let h : L → M be a coz-onto quotient map. Then M is pseudocom-

pact iff it is relatively pseudocompact and h is almost coz-codense.

Proof. The forward implication follows from Proposition 2.5 (since C-quotient ⇔ coz-onto
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plus almost coz-codense) and the fact that a pseudocompact quotient is relatively pseudo-

compact.

Conversely, let {cn | n ∈ N} be a countable cozero cover of M . Then, since h is a C-quotient

map by the hypothesis, it is a P ℵ0-quotient map. Therefore there is a countable cozero cover

{sn | n ∈ N} of L such that h(sn) ≤ cn for each n. As observed earlier, {[sn] | n ∈ N} is a cozero

cover of υL. Consequently
∨

↑(hυ)∗(0){(hυ)∗(0) ∨ [sn] | n ∈ N} = 1υL. Since ↑(hυ)∗(0) is com-

pact, there are finitely many indices {n1, . . . , nk} such that υ∗
(
h∗(0)

)
∨ [sn1 ]∨· · ·∨ [snk

] = 1υL.

Acting υ on this equality yields h∗(0)∨sn1∨· · ·∨snk
= 1L, and acting h on this latter equality

yields cn1 ∨ · · · ∨ cnk
= 1M , whence we deduce that M is pseudocompact. �

Combining this result with Proposition 2.1(6) we get:

Corollary 3.6. The closure of a relatively pseudocompact C-quotient of a Dieudonné com-

plete frame is compact.

In [21] Weir proves (a result he attributes to A.W. Hager and D.G. Johnson) that if U

is a relatively pseudocompact cozero set of a completely regular space X, then the closure of

U is pseudocompact. In the case of normal regular frames (or spaces) more can be said as we

show below.

Proposition 3.7. The closure of a relatively pseudocompact quotient of a normal regular

frame is pseudocompact.

Proof. Let {c1, c2, . . .} be a countable cozero cover of ↑h∗(0) where h : L → M is a rela-

tively pseudocompact quotient of a normal regular frame L. Since L is normal, the closed

quotient L →↑h∗(0) is a C-quotient, and therefore a P ℵ0-quotient. There is therefore a count-

able cozero cover {s1, s2, . . .} of L such that sn ∨ h∗(0) ≤ cn for each n. Since h∗(0) ≤ cn for

each n, we have that υ∗(cn) ∈ ↑(hυ)∗(0) for each n. We claim that
∨
{υ∗(cn) | n ∈ N} = 1υL.

If we denote this join by J , then, in view of the fact that sn ≤ cn for each n, we have that

sn ∈ J for each n. So J cannot be a proper ideal as it is a σ-ideal and
∨

sn = 1. So, by

compactness, there are finitely many indices n1, . . . , nk such that υ∗(cn1)∨· · ·∨υ∗(cnk
) = 1υL.

Now act υ to obtain cn1 ∨ · · · ∨ cnk
= 1, which then shows that ↑h∗(0) is pseudocompact. �
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